
Jia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407385/publications.pdf Version: 2024-02-01

3.9

47

#	Article	IF	CITATIONS
1	Color-tunable, self-healing albumin-based lanthanide luminescent hydrogels fabricated by reductant-triggered gelation. International Journal of Biological Macromolecules, 2022, 195, 530-537.	7.5	11
2	Aggregation-Induced Emission-Active Biomacromolecules: Progress, Challenges, and Opportunities. Biomacromolecules, 2022, 23, 2185-2196.	5.4	14
3	Activated Internal <scp>Alkyneâ€Based</scp> Polymerization ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2001-2013.	4.9	9
4	Multicomponent Polymerizations Involving Green Monomers. Macromolecular Rapid Communications, 2021, 42, e2000547.	3.9	12
5	Imidazole-based Cu(<scp>i</scp>)-catalyzed click polymerization of diazides and diynes under mild conditions. Polymer Chemistry, 2021, 12, 1078-1085.	3.9	0
6	Recent progress in the applications of amino–yne click chemistry. Polymer Chemistry, 2021, 12, 2978-2986.	3.9	29
7	CO ₂ -Involved and Isocyanide-Based Three-Component Polymerization toward Functional Heterocyclic Polymers with Self-Assembly and Sensing Properties. Macromolecules, 2021, 54, 4112-4119.	4.8	9
8	Preparation of Multifunctional Hyperbranched Poly(β-aminoacrylate)s by Spontaneous Amino-yne Click Polymerization. Macromolecules, 2020, 53, 5248-5254.	4.8	48
9	C(sp ³)–H Polyamination of Internal Alkynes toward Regio- and Stereoregular Functional Poly(allylic tertiary amine)s. Macromolecules, 2020, 53, 3358-3369.	4.8	13
10	Palladium/Benzoic Acid-Catalyzed Regio- and Stereoselective Polymerization of Internal Diynes and Diols through C(sp ³)–H Activation. ACS Macro Letters, 2019, 8, 1068-1074.	4.8	18
11	Ethynylsulfone-Based Spontaneous Amino-yne Click Polymerization: A Facile Tool toward Regio- and Stereoregular Dynamic Polymers. Macromolecules, 2019, 52, 4526-4533.	4.8	41
12	Transition metal-free thiol–yne click polymerization toward <i>Z</i> -stereoregular poly(vinylene) Tj ETQq0 0 0	rg <u>B</u> T/Ove	erlock 10 Tf 50
13	Controllable synthesis of lanthanide Yb ³⁺ and Er ³⁺ co-doped AWO ₄ (A = Ca, Sr, Ba) micro-structured materials: phase, morphology and up-conversion luminescence enhancement. Dalton Transactions, 2018, 47, 8611-8618.	3.3	27
14	Controlled synthesis of 3D flower-like MgWO ₄ :Eu ³⁺ hierarchical structures and fluorescence enhancement through introduction of carbon dots. CrystEngComm, 2018, 20, 608-614.	2.6	22
15	In situ monitoring of molecular aggregation using circular dichroism. Nature Communications, 2018, 9, 4961.	12.8	70
16	Strategy to Enhance the Luminescence of Lanthanide Ions Doped MgWO ₄ Nanosheets through Incorporation of Carbon Dots. Inorganic Chemistry, 2018, 57, 8662-8672.	4.0	44
17	Electrochemical perspective on the size-dependent density of states at single graphene flake. Electrochemistry Communications, 2018, 95, 14-17.	4.7	1

¹⁸ Superbase catalyzed regio-selective polyhydroalkoxylation of alkynes: a facile route towards functional poly(vinyl ether)s. Polymer Chemistry, 2017, 8, 2713-2722.

Jia Wang

#	Article	IF	CITATIONS
19	Efficient and Regioselectivityâ€Tunable Metalâ€Free Polycycloaddition of Activated Azide and Alkynes. Macromolecular Rapid Communications, 2017, 38, 1600620.	3.9	16
20	A colour-tunable chiral AIEgen: reversible coordination, enantiomer discrimination and morphology visualization. Chemical Science, 2016, 7, 6106-6114.	7.4	22
21	Synthesis of 1,5-regioregular polytriazoles by efficient NMe ₄ OH-mediated azide–alkyne click polymerization. Polymer Chemistry, 2015, 6, 5545-5549.	3.9	41
22	Axial chiral aggregation-induced emission luminogens with aggregation-annihilated circular dichroism effect. Journal of Materials Chemistry C, 2015, 3, 5162-5166.	5.5	76
23	Effects of surface functionalized graphene oxide on the behavior of sodium alginate. Carbohydrate Polymers, 2015, 117, 616-623.	10.2	83
24	Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids and Surfaces B: Biointerfaces, 2014, 113, 223-229.	5.0	167
25	Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose. Analyst, The, 2013, 138, 3259.	3.5	20
26	Non-Enzymatic Electrochemical Hydrogen Peroxide Sensor Based on Copper Oxide Hollow Microspheres. Sensor Letters, 2013, 11, 1945-1949.	0.4	0
27	Properties and structural characterization of chitosan/poly(vinyl alcohol)/graphene oxide nano composites. E-Polymers, 2012, 12, .	3.0	9
28	Properties and structural characterization of chitosan/graphene oxide biocomposites. Bio-Medical Materials and Engineering, 2012, 22, 129-135.	0.6	9
29	Effects of organic chain length of layered zirconium phosphonate on the structure and properties of castor oil-based polyurethane nanocomposites. Composites Science and Technology, 2012, 72, 915-923.	7.8	18
30	Properties and structural characterization of oxide starch/chitosan/graphene oxide biodegradable nanocomposites. Journal of Applied Polymer Science, 2012, 123, 2933-2944.	2.6	47