## Alexandr Kazak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4073603/publications.pdf Version: 2024-02-01



ALEYANDD KAZAK

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ultrathin Langmuir–Schaefer films of slipped-cofacial J-type phthalocyanine dimer: Supramolecular<br>organization, UV/Vis/NIR study and nonlinear absorbance of femtosecond laser radiation. Applied<br>Surface Science, 2021, 545, 148993. | 6.1 | 10        |
| 2  | Intermolecular interactions of layers octa-phenyl-2,3-naphthalocyaninato zinc. Journal of Physics:<br>Conference Series, 2021, 2056, 012014.                                                                                                | 0.4 | 0         |
| 3  | Supramolecular organization and optical properties of BODIPY derivatives in Langmuir–Schaefer<br>films. New Journal of Chemistry, 2020, 44, 19046-19053.                                                                                    | 2.8 | 8         |
| 4  | Interaction of N,N'-Di(4-chlorophenyl)diimide 1,1'-Binaphtyl-4,4',5,5',8,8'-hexacarboxylic Acid with<br>Thiourea Dioxide in Solution and Thin Film. Crystallography Reports, 2020, 65, 779-785.                                             | 0.6 | 3         |
| 5  | Influence of 2,3-naphthalocyanines structure on their supramolecular organization in floating layers. Journal of Physics: Conference Series, 2020, 1560, 012034.                                                                            | 0.4 | 1         |
| 6  | Floating layers and thin films of mesogenic mix-substituted phthalocyanine holmium complex. Thin<br>Solid Films, 2020, 704, 137952.                                                                                                         | 1.8 | 10        |
| 7  | The influence of alkylation on the photophysical properties of BODIPYs and their labeling in blood plasma proteins. Journal of Molecular Liquids, 2020, 304, 112717.                                                                        | 4.9 | 16        |
| 8  | Floating layer structure of mesogenic phthalocyanine of A3B-type. Mendeleev Communications, 2020, 30, 52-54.                                                                                                                                | 1.6 | 11        |
| 9  | Self-organization of octa-phenyl-2,3-naphthalocyaninato zinc floating layers. New Journal of Chemistry, 2020, 44, 3833-3837.                                                                                                                | 2.8 | 14        |
| 10 | Oxophosphoryl Complexes of Dipyrrin: Spectral and Aggregation Characteristics of Solutions and Thin Films. Crystallography Reports, 2019, 64, 644-648.                                                                                      | 0.6 | 10        |
| 11 | Conductivity and dielectric properties of cholesteryl tridecylate with nanosized fragments of fluorinated graphene. Journal of Molecular Liquids, 2019, 291, 111259.                                                                        | 4.9 | 17        |
| 12 | Features of nonlinear optical properties of thin-film phthalocyanine coatings obtained by<br>femtosecond hardware-software Z-scan measurement complex. Journal of Physics: Conference Series,<br>2019, 1309, 012021.                        | 0.4 | 0         |
| 13 | BAM and GID structural investigation of<br>1,4,8,11,15,18-hexahexyloxy-22,23,24,25-tetrachlorophthalocyanine floating layers. Journal of Physics:<br>Conference Series, 2019, 1309, 012023.                                                 | 0.4 | 0         |
| 14 | Dielectric properties of liquid crystalline composites doped with nano-dimensional fragments of shungite carbon. Liquid Crystals, 2019, 46, 1345-1352.                                                                                      | 2.2 | 24        |
| 15 | Thin-film materials based on phthalocyanine derivatives: structure and physico-chemical properties.<br>ITM Web of Conferences, 2019, 30, 08006.                                                                                             | 0.5 | 1         |
| 16 | Self-Organization of Asymmetrical Phthalocyanine Derivative of A3B-Type in Floating Layers and<br>Langmuir - Schaefer Films. Zhidkie Kristally I Ikh Prakticheskoe Ispol'zovanie, 2019, 19, 88-96.                                          | 0.1 | 3         |
| 17 | Supramolecular effects as driving force of dipyrrin based functional materials engineering. Journal of Physics: Conference Series, 2018, 951, 012017.                                                                                       | 0.4 | 2         |
| 18 | Effect of Subphase Conditions on the Formation of Graphene Langmuir layers. Journal of Physics:<br>Conference Series, 2018, 1135, 012029.                                                                                                   | 0.4 | 3         |

Alexandr Kazak

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Studying of Surfactant Excess Separation from Non-aqueous Quantum Dots Solution on its<br>Monolayer Formation Process. BioNanoScience, 2018, 8, 1081-1086.                                                             | 3.5 | 7         |
| 20 | Self-Organization of Azo Dye KD-2 in Floating Layers and Langmuir – Schaefer Films. Zhidkie Kristally I<br>Ikh Prakticheskoe Ispol'zovanie, 2018, 18, 74-81.                                                           | 0.1 | 21        |
| 21 | Synthesis and spectral properties of preorganized BODIPYs in solutions and Langmuir-Schaefer films.<br>Applied Surface Science, 2017, 424, 228-238.                                                                    | 6.1 | 23        |
| 22 | Mix-substituted phthalocyanines of a "push–pull―type and their metal complexes as prospective nanostructured materials for optoelectronics. Opto-electronics Review, 2017, 25, 127-136.                                | 2.4 | 27        |
| 23 | Temperature and Mixing Ratio Effects in the Formation of CdSe/CdS/ZnS Quantum Dots with<br>4′-n-octyl-4-p-Cyanobiphenyl Thin Films. BioNanoScience, 2017, 7, 666-671.                                                  | 3.5 | 22        |
| 24 | Electronic properties of A2B6 quantum dots incorporated into Langmuir–Blodgett films. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 1472-1475.                                                       | 0.6 | 3         |
| 25 | Complex approach to the tribotechnical processing of elements for automobile and tractor engines.<br>Journal of Friction and Wear, 2016, 37, 155-159.                                                                  | 0.5 | 1         |
| 26 | Structure and physicochemical properties of thin film photosemiconductor cells based on porphine derivatives. Crystallography Reports, 2016, 61, 493-498.                                                              | 0.6 | 19        |
| 27 | Rheological characteristics of different carbon nanoparticles in cholesteric mesogen dispersions as lubricant coolant additives. Journal of Friction and Wear, 2015, 36, 380-385.                                      | 0.5 | 21        |
| 28 | Optical, Mesomorphic and Photoelectric Properties of the Mix-substituted Phthalocyanine Ligands<br>and their Metal Complexes of the A3B Type. Zhidkie Kristally I Ikh Prakticheskoe Ispol'zovanie, 2015, 15,<br>56-71. | 0.1 | 6         |
| 29 | Optical Properties and Supramolecular Organization of Mix-Substituted Phthalocyanine Holmium<br>Complex in Langmuir-Schaefer Films. Macroheterocycles, 2015, 8, 284-289.                                               | 0.5 | 19        |
| 30 | Modeling of interaction of chiral mesogen with carbon nanotube. , 2014, , .                                                                                                                                            |     | 0         |
| 31 | Optical properties of Langmuir-Blodgett films of tetraphenylporphin derivatives and mix-substituted phthalocyanine derivatives. , 2014, , .                                                                            |     | Ο         |
| 32 | Influence of molecular structure peculiarities of phthalocyanine derivatives on their<br>supramolecular organization and properties in the bulk and thin films. Phase Transitions, 2014, 87,<br>801-813.               | 1.3 | 16        |
| 33 | Supramolecular organization of meso-substituted derivatives of tetraphenylporphine in thin films.<br>Journal of Surface Investigation, 2013, 7, 347-350.                                                               | 0.5 | 0         |
| 34 | Influence of Hexacatenar Structure on Supramolecular Organization in CT-Complexes With TNF and<br>(â^')-TAPA. Molecular Crystals and Liquid Crystals, 2012, 553, 72-80.                                                | 0.9 | 0         |
| 35 | Influence of <i>meso</i> -Substituted Tetraphenylporphyrin Derivatives Structure on Their<br>Supramolecular Organization in Floating Layers and Langmuir–Blodgett Films. Langmuir, 2012, 28,<br>16951-16957.           | 3.5 | 16        |
| 36 | Influence of <i>Meso</i> -Substituted Porphyrins Molecular Structure on Their Self-Organization in Floating Layers. Molecular Crystals and Liquid Crystals, 2011, 541, 28/[266]-34/[272].                              | 0.9 | 20        |

| #  | Article                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence ofMeso-Substituted Porphyrins Molecular Structure on Their Mesogenity. Molecular<br>Crystals and Liquid Crystals, 2010, 525, 184-193. | 0.9 | 9         |
| 38 | Influence of meso-substituted porphyrins derivatives molecular structure on their liquid-cristal                                                |     | 0         |

Influence of meso-substituted porphyrins derivatives molecular structure on their liquid-cristal properties and supramolecular organization in floating layers. , 2010, , . 38

4