
Yulong Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4073526/publications.pdf Version: 2024-02-01

YULONG XING

#	Article	IF	CITATIONS
1	High order finite difference WENO schemes with the exact conservation property for the shallow water equations. Journal of Computational Physics, 2005, 208, 206-227.	3.8	281
2	Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Advances in Water Resources, 2010, 33, 1476-1493.	3.8	252
3	High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Journal of Computational Physics, 2006, 214, 567-598.	3.8	210
4	High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. Journal of Computational Physics, 2007, 226, 29-58.	3.8	202
5	Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. Journal of Computational Physics, 2014, 257, 536-553.	3.8	86
6	Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes. Journal of Scientific Computing, 2013, 57, 19-41.	2.3	82
7	High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields. Journal of Scientific Computing, 2013, 54, 645-662.	2.3	81
8	On the Advantage of Well-Balanced Schemes forÂMoving-Water Equilibria of the Shallow Water Equations. Journal of Scientific Computing, 2011, 48, 339-349.	2.3	70
9	High-order finite volume WENO schemes for the shallow water equations with dry states. Advances in Water Resources, 2011, 34, 1026-1038.	3.8	64
10	Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. Journal of Computational Physics, 2014, 272, 88-107.	3.8	59
11	Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems and Imaging, 2013, 7, 967-986.	1.1	43
12	High order finite volume WENO schemes for the Euler equations under gravitational fields. Journal of Computational Physics, 2016, 316, 145-163.	3.8	38
13	Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. Journal of Computational Physics, 2018, 352, 445-462.	3.8	36
14	Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg–de Vries equation. Journal of Computational and Applied Mathematics, 2014, 255, 441-455.	2.0	28
15	Well-Balanced Discontinuous Galerkin Methods for the Euler Equations Under Gravitational Fields. Journal of Scientific Computing, 2016, 67, 493-513.	2.3	28
16	High order finite volume WENO schemes for the shallow water flows through channels with irregular geometry. Journal of Computational and Applied Mathematics, 2016, 299, 229-244.	2.0	24
17	An Invariant Preserving Discontinuous Galerkin Method for the Camassa–Holm Equation. SIAM Journal of Scientific Computing, 2016, 38, A1919-A1934.	2.8	22
18	\$L^2\$ stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Mathematics of Computation, 2016, 86, 121-155.	2.1	22

YULONG XING

#	Article	IF	CITATIONS
19	Moist multi-scale models for the hurricane embryo. Journal of Fluid Mechanics, 2010, 657, 478-501.	3.4	18
20	A Posteriori Error Estimates for Conservative Local Discontinuous GalerkinMethods for the Generalized Korteweg-de Vries Equation. Communications in Computational Physics, 2016, 20, 250-278.	1.7	18
21	Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Computers and Mathematics With Applications, 2018, 75, 2071-2085.	2.7	18
22	Well-balanced discontinuous Galerkin methods for the one-dimensional blood flow through arteries model with man-at-eternal-rest and living-man equilibria. Computers and Fluids, 2020, 203, 104493.	2.5	15
23	Uniformly High-Order Structure-Preserving Discontinuous Galerkin Methods for Euler Equations with Gravitation: Positivity and Well-Balancedness. SIAM Journal of Scientific Computing, 2021, 43, A472-A510.	2.8	14
24	Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels. Advances in Water Resources, 2018, 115, 172-184.	3.8	12
25	Entropy Stable and Well-Balanced Discontinuous Galerkin Methods for the Nonlinear Shallow Water Equations. Journal of Scientific Computing, 2020, 83, 1.	2.3	12
26	High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers. Journal of Computational Physics, 2022, 463, 111255.	3.8	11
27	Energy conserving local discontinuous Galerkin methods for the improved Boussinesq equation. Journal of Computational Physics, 2020, 401, 109002.	3.8	10
28	Optimal Energy Conserving and Energy Dissipative Local Discontinuous Galerkin Methods for the Benjamin–Bona–Mahony Equation. Journal of Scientific Computing, 2020, 83, 1.	2.3	10
29	Local Discontinuous Galerkin Methods for the Boussinesq Coupled BBM System. Journal of Scientific Computing, 2018, 75, 536-559.	2.3	8
30	A discontinuous Galerkin method for the Aw-Rascle traffic flow model on networks. Journal of Computational Physics, 2020, 406, 109183.	3.8	8
31	On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: Energy conservation and multi-symplecticity. Journal of Computational Physics, 2020, 419, 109662.	3.8	8
32	Optimal error estimates of discontinuous Galerkin methods with generalized fluxes for wave equations on unstructured meshes. Mathematics of Computation, 2021, 90, 1741-1772.	2.1	7
33	Multi-symplectic discontinuous Galerkin methods for the stochastic Maxwell equations with additive noise. Journal of Computational Physics, 2022, 461, 111199.	3.8	7
34	Application of positivity-preserving well-balanced discontinuous Galerkin method in computational hydrology. Computers and Fluids, 2016, 139, 112-119.	2.5	6
35	High Order Still-Water and Moving-Water Equilibria Preserving Discontinuous Galerkin Methods for the Ripa Model. Journal of Scientific Computing, 2020, 82, 1.	2.3	6
36	High order sign-preserving and well-balanced exponential Runge-Kutta discontinuous Galerkin methods for the shallow water equations with friction. Journal of Computational Physics, 2021, 444, 110543.	3.8	6

YULONG XING

#	Article	IF	CITATIONS
37	Local Discontinuous Galerkin Methods for the Khokhlov–Zabolotskaya–Kuznetzov Equation. Journal of Scientific Computing, 2017, 73, 593-616.	2.3	5
38	Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System. Communications on Applied Mathematics and Computation, 2022, 4, 381-416.	1.7	5
39	Optimal Energy Conserving Local Discontinuous Galerkin Methods for Elastodynamics: Semi and Fully Discrete Error Analysis. Journal of Scientific Computing, 2021, 87, 1.	2.3	3
40	Finite Element Approximations of a Class of Nonlinear Stochastic Wave Equations with Multiplicative Noise. Journal of Scientific Computing, 2022, 91, 1.	2.3	3
41	Energy conserving discontinuous Galerkin method with scalar auxiliary variable technique for the nonlinear Dirac equation. Journal of Computational Physics, 2022, 463, 111278.	3.8	2
42	Energy conserving and well-balanced discontinuous Galerkin methods for the Euler–Poisson equationsÂin spherical symmetry. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0