
Anna Kubacka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4073236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews, 2012, 112, 1555-1614.	23.0	2,107
2	Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Scientific Reports, 2014, 4, 4134.	1.6	335
3	Cationic (V, Mo, Nb, W) doping of TiO2–anatase: A real alternative for visible light-driven photocatalysts. Catalysis Today, 2009, 143, 286-292.	2.2	188
4	Role of Interface Contact in CeO ₂ –TiO ₂ Photocatalytic Composite Materials. ACS Catalysis, 2014, 4, 63-72.	5.5	178
5	Unusual Physical and Chemical Properties of Ni in Ce _{1â^`<i>x</i>} Ni _{<i>x</i>} O _{2â^`<i>y</i>} Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction. Journal of Physical Chemistry C. 2010. 114. 12689-12697.	1.5	151
6	Interface Effects in Sunlight-Driven Ag/g-C ₃ N ₄ Composite Catalysts: Study of the Toluene Photodegradation Quantum Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 2617-2627.	4.0	140
7	Disinfection capability of Ag/g-C 3 N 4 composite photocatalysts under UV and visible light illumination. Applied Catalysis B: Environmental, 2016, 183, 86-95.	10.8	127
8	High-Performance Dual-Action Polymerâ^'TiO ₂ Nanocomposite Films via Melting Processing. Nano Letters, 2007, 7, 2529-2534.	4.5	121
9	Nanostructured Ti–M mixed-metal oxides: Toward a visible light-driven photocatalyst. Journal of Catalysis, 2008, 254, 272-284.	3.1	116
10	Self‣terilized EVOHâ€TiO ₂ Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials, 2008, 18, 1949-1960.	7.8	111
11	High Activity of Ce _{1â^'<i>x</i>} Ni _{<i>x</i>} O _{2â^'<i>y</i>} for H ₂ Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal–Oxide Interactions. Angewandte Chemie - International Edition, 2010, 49, 9680-9684.	7.2	108
12	High-performance Er3+–TiO2 system: Dual up-conversion and electronic role of the lanthanide. Journal of Catalysis, 2013, 299, 298-306.	3.1	108
13	Ag promotion of TiO2-anatase disinfection capability: Study of Escherichia coli inactivation. Applied Catalysis B: Environmental, 2008, 84, 87-93.	10.8	102
14	Combining Time-Resolved Hard X-ray Diffraction and Diffuse Reflectance Infrared Spectroscopy To Illuminate CO Dissociation and Transient Carbon Storage by Supported Pd Nanoparticles during CO/NO Cycling. Journal of the American Chemical Society, 2010, 132, 4540-4541.	6.6	89
15	Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Applied Catalysis B: Environmental, 2018, 238, 434-443.	10.8	85
16	Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene. Catalysis Science and Technology, 2014, 4, 2006.	2.1	83
17	Boosting TiO2-anatase antimicrobial activity: Polymer-oxide thin films. Applied Catalysis B: Environmental, 2009, 89, 441-447.	10.8	81
18	Doping level effect on sunlight-driven W,N-co-doped TiO2-anatase photo-catalysts for aromatic hydrocarbon partial oxidation. Applied Catalysis B: Environmental, 2010, 93, 274-281.	10.8	80

#	Article	IF	CITATIONS
19	Cu–TiO2 systems for the photocatalytic H2 production: Influence of structural and surface support features. Applied Catalysis B: Environmental, 2015, 179, 468-478.	10.8	79
20	Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach. Chemical Society Reviews, 2019, 48, 637-682.	18.7	79
21	Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalysts. Applied Catalysis A: General, 2016, 518, 2-17.	2.2	78
22	Acid properties of NaH-mordenites: Infrared spectroscopic studies of ammonia sorption. Zeolites, 1995, 15, 501-506.	0.9	75
23	N- and/or W-(co)doped TiO2-anatase catalysts: Effect of the calcination treatment on photoactivity. Applied Catalysis B: Environmental, 2010, 95, 238-244.	10.8	74
24	UV and visible light optimization of anatase TiO2 antimicrobial properties: Surface deposition of metal and oxide (Cu, Zn, Ag) species. Applied Catalysis B: Environmental, 2013, 140-141, 680-690.	10.8	73
25	Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination. Applied Catalysis B: Environmental, 2018, 238, 533-545.	10.8	70
26	Measuring and interpreting quantum efficiency for hydrogen photo-production using Pt-titania catalysts. Journal of Catalysis, 2017, 347, 157-169.	3.1	68
27	Plasmonic Nanoparticle/Polymer Nanocomposites with Enhanced Photocatalytic Antimicrobial Properties. Journal of Physical Chemistry C, 2009, 113, 9182-9190.	1.5	66
28	Composite Bi2O3–TiO2 catalysts for toluene photo-degradation: Ultraviolet and visible light performances. Applied Catalysis B: Environmental, 2014, 156-157, 307-313.	10.8	63
29	Promotion of CeO2–TiO2 photoactivity by g-C3N4: Ultraviolet and visible light elimination of toluene. Applied Catalysis B: Environmental, 2015, 164, 261-270.	10.8	63
30	Nanosized Ti–V mixed oxides: Effect of doping level in the photo-catalytic degradation of toluene using sunlight-type excitation. Applied Catalysis B: Environmental, 2007, 74, 26-33.	10.8	62
31	Evolution of H2 photoproduction with Cu content on CuO -TiO2 composite catalysts prepared by a microemulsion method. Applied Catalysis B: Environmental, 2015, 163, 214-222.	10.8	61
32	Heterogeneity of OH groups in H-mordenites: Effect of dehydroxylation. Zeolites, 1996, 17, 428-433.	0.9	60
33	Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties. International Journal of Molecular Sciences, 2013, 14, 9249-9266.	1.8	60
34	Heterogeneous photocatalysis: Light-matter interaction and chemical effects in quantum efficiency calculations. Journal of Catalysis, 2015, 330, 154-166.	3.1	59
35	Phaseâ€Contact Engineering in Mono―and Bimetallic Cuâ€Ni Coâ€catalysts for Hydrogen Photocatalytic Materials. Angewandte Chemie - International Edition, 2018, 57, 1199-1203.	7.2	59
36	Sunlight-driven toluene photo-elimination using CeO2-TiO2 composite systems: A kinetic study. Applied Catalysis B: Environmental, 2013, 140-141, 626-635.	10.8	58

#	Article	IF	CITATIONS
37	Composite H3PW12O40–TiO2 catalysts for toluene selective photo-oxidation. Applied Catalysis B: Environmental, 2018, 225, 100-109.	10.8	58
38	Acetaldehyde degradation under UV and visible irradiation using CeO2–TiO2 composite systems: Evaluation of the photocatalytic efficiencies. Chemical Engineering Journal, 2014, 255, 297-306.	6.6	56
39	Hydroxylation/oxidation of benzene over Cu-ZSM-5 systems: Optimization of the one-step route to phenol. Journal of Catalysis, 2007, 250, 184-189.	3.1	55
40	Influence of sulfur on the structural, surface properties and photocatalytic activity of sulfated TiO2. Applied Catalysis B: Environmental, 2009, 90, 633-641.	10.8	52
41	Water-Gas Shift Reaction on Ni–W–Ce Catalysts: Catalytic Activity and Structural Characterization. Journal of Physical Chemistry C, 2014, 118, 2528-2538.	1.5	48
42	Heterogeneity of OH groups in NaH-mordenites: Effect of Na/H exchange degree. Zeolites, 1997, 18, 245-249.	0.9	47
43	W,N-Codoped TiO ₂ -Anatase: A Sunlight-Operated Catalyst for Efficient and Selective Aromatic Hydrocarbons Photo-Oxidation. Journal of Physical Chemistry C, 2009, 113, 8553-8555.	1.5	47
44	Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants. Journal of Catalysis, 2015, 321, 90-99.	3.1	47
45	Efficient Electrochemical Production of Syngas from CO ₂ and H ₂ O by using a Nanostructured Ag/gâ€C ₃ N ₄ Catalyst. ChemElectroChem, 2016, 3, 1497-1502.	1.7	46
46	Characterization and catalytic properties of CuO/CeO 2 /MgAl 2 O 4 for preferential oxidation of CO in H 2 -rich streams. Applied Catalysis B: Environmental, 2016, 188, 292-304.	10.8	46
47	g-C3N4/TiO2 composite catalysts for the photo-oxidation of toluene: Chemical and charge handling effects. Chemical Engineering Journal, 2019, 378, 122228.	6.6	46
48	Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects. Applied Catalysis B: Environmental, 2019, 256, 117790.	10.8	44
49	Immobilization of dodecatungstophosphoric acid on dealuminated zeolite Y: a physicochemical study. Applied Catalysis A: General, 2000, 194-195, 137-146.	2.2	43
50	Effect of exfoliation and surface deposition of MnOx species in g-C3N4: Toluene photo-degradation under UV and visible light. Applied Catalysis B: Environmental, 2017, 203, 663-672.	10.8	43
51	In/Co-ferrierite: A highly active catalyst for the CH4-SCR NO process under presence of steam. Applied Catalysis B: Environmental, 2006, 69, 43-48.	10.8	42
52	Tailoring polymer–TiO2 film properties by presence of metal (Ag, Cu, Zn) species: Optimization of antimicrobial properties. Applied Catalysis B: Environmental, 2011, 104, 346-352.	10.8	42
53	UV and visible hydrogen photo-production using Pt promoted Nb-doped TiO 2 photo-catalysts: Interpreting quantum efficiency. Applied Catalysis B: Environmental, 2017, 216, 133-145.	10.8	41
54	Nanoparticulate Pd Supported Catalysts: Size-Dependent Formation of Pd(I)/Pd(0) and Their Role in CO Elimination. Journal of the American Chemical Society, 2011, 133, 4484-4489.	6.6	40

#	Article	lF	CITATIONS
55	Effective Enhancement of TiO ₂ Photocatalysis by Synergistic Interaction of Surface Species: From Promoters to Co-catalysts. ACS Catalysis, 2014, 4, 4277-4288.	5.5	37
56	Towards full-spectrum photocatalysis: Successful approaches and materials. Applied Catalysis A: General, 2021, 610, 117966.	2.2	36
57	Role of the Interface in Baseâ€Metal Ceriaâ€Based Catalysts for Hydrogen Purification and Production Processes. ChemCatChem, 2015, 7, 3614-3624.	1.8	35
58	Gas phase 2-propanol degradation using titania photocatalysts: Study of the quantum efficiency. Applied Catalysis B: Environmental, 2017, 201, 400-410.	10.8	35
59	Promoting H2 photoproduction of TiO2-based materials by surface decoration with Pt nanoparticles and SnS2 nanoplatelets. Applied Catalysis B: Environmental, 2020, 277, 119246.	10.8	35
60	Thermo-photo degradation of 2-propanol using a composite ceria-titania catalyst: Physico-chemical interpretation from a kinetic model. Applied Catalysis B: Environmental, 2018, 225, 298-306.	10.8	34
61	Kinetics of photocatalytic disinfection in TiO2-containing polymer thin films: UV and visible light performances. Applied Catalysis B: Environmental, 2012, 121-122, 230-238.	10.8	33
62	Enhancing promoting effects in g-C3N4-Mn+/CeO2-TiO2 ternary composites: Photo-handling of charge carriers. Applied Catalysis B: Environmental, 2015, 176-177, 687-698.	10.8	33
63	Green photo-oxidation of styrene over W–Ti composite catalysts. Journal of Catalysis, 2014, 309, 428-438.	3.1	32
64	Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2. Journal of Molecular Catalysis A, 2010, 320, 14-18.	4.8	31
65	Observing Oxygen Storage and Release at Work during Cycling Redox Conditions: Synergies between Noble Metal and Oxide Promoter. Angewandte Chemie - International Edition, 2012, 51, 2363-2367.	7.2	31
66	Efficient and stable Ni–Ce glycerol reforming catalysts: Chemical imaging using X-ray electron and scanning transmission microscopy. Applied Catalysis B: Environmental, 2015, 165, 139-148.	10.8	31
67	Multitechnique analysis of supported Pd particles upon dynamic, cycling CO/NO conditions: Size-dependence of the structure–activity relationship. Journal of Catalysis, 2010, 270, 275-284.	3.1	29
68	Making Photo-selective TiO ₂ Materials by Cation–Anion Codoping: From Structure and Electronic Properties to Photoactivity. Journal of Physical Chemistry C, 2012, 116, 18759-18767.	1.5	29
69	Abatement of organics and Escherichia coli using CeO2-TiO2 composite oxides: Ultraviolet and visible light performances. Applied Catalysis B: Environmental, 2014, 154-155, 350-359.	10.8	29
70	UV and visible light driven H2 photo-production using Nb-doped TiO2: Comparing Pt and Pd co-catalysts. Molecular Catalysis, 2017, 437, 1-10.	1.0	28
71	H2 photo-production from methanol, ethanol and 2-propanol: Pt-(Nb)TiO2 performance under UV and visible light. Molecular Catalysis, 2018, 446, 88-97.	1.0	28
72	Operando Spectroscopy in Photocatalysis. ChemPhotoChem, 2018, 2, 777-785.	1.5	28

#	Article	lF	CITATIONS
73	Influence of calcination temperature and atmosphere preparation parameters on CO-PROX activity of catalysts based on CeO2/CuO inverse configurations. Journal of Power Sources, 2011, 196, 4364-4369.	4.0	25
74	Facile synthesis of B/g-C ₃ N ₄ composite materials for the continuous-flow selective photo-production of acetone. Green Chemistry, 2020, 22, 4975-4984.	4.6	25
75	Hydrogen photogeneration using ternary CuGaS2-TiO2-Pt nanocomposites. International Journal of Hydrogen Energy, 2020, 45, 1510-1520.	3.8	24
76	Oxidative dehydrogenation of propane on zeolite catalysts. Catalysis Today, 2000, 61, 343-352.	2.2	23
77	Biocidal Capability Optimization in Organicâ^'Inorganic Nanocomposites Based on Titania. Environmental Science & Technology, 2009, 43, 1630-1634.	4.6	23
78	Tungsten as an interface agent leading to highly active and stable copper–ceria water gas shift catalyst. Applied Catalysis B: Environmental, 2013, 132-133, 423-432.	10.8	23
79	Effect of the anatase–rutile contact in gas phase toluene photodegradation quantum efficiency. Chemical Engineering Journal, 2016, 299, 393-402.	6.6	23
80	Sunlight-Operated TiO2-Based Photocatalysts. Molecules, 2020, 25, 4008.	1.7	23
81	Surface CuO, Bi ₂ O ₃ , and CeO ₂ Species Supported in TiO ₂ -Anatase: Study of Interface Effects in Toluene Photodegradation Quantum Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 13934-13945.	4.0	22
82	Er-W codoping of TiO2-anatase: Structural and electronic characterization and disinfection capability under UV–vis, and near-IR excitation. Applied Catalysis B: Environmental, 2018, 228, 113-129.	10.8	22
83	Heterogenization of 12-tungstophosphoric acid on stabilized zeolite Y. Topics in Catalysis, 2000, 11/12, 391-400.	1.3	21
84	Toluene and styrene photo-oxidation quantum efficiency: Comparison between doped and composite tungsten-containing anatase-based catalysts. Applied Catalysis B: Environmental, 2019, 245, 49-61.	10.8	21
85	Sunlightâ€Driven Hydrogen Production Using an Annular Flow Photoreactor and g ₃ N ₄ â€Based Catalysts. ChemPhotoChem, 2018, 2, 870-877.	1.5	20
86	Dynamic "operando―observation of 1 wt% Pd-based TWCs: Simultaneous XAS/DRIFTS/mass spectrometry analysis of the effects of Ce0.5Zr0.5O2 loading on structure, reactivity and performance. Catalysis Today, 2009, 145, 288-293.	2.2	19
87	Visible and ultraviolet antibacterial behavior in PVDF–TiO2 nanocomposite films. European Polymer Journal, 2015, 71, 412-422.	2.6	19
88	Sn modification of TiO2 anatase and rutile type phases: 2-Propanol photo-oxidation under UV and visible light. Applied Catalysis B: Environmental, 2018, 228, 130-141.	10.8	19
89	Catalytic properties of niobium and gallium oxide systems supported on MCM-41 type materials. Applied Catalysis A: General, 2007, 325, 328-335.	2.2	18
90	Study on UV Excitation Properties of Y2O3:Ln3+ (Ln = Eu3+ or Tb3+) Luminescent Nanomaterials. Journal of Nanoscience and Nanotechnology, 2008, 8, 1443-1448.	0.9	18

#	Article	IF	CITATIONS
91	Boosting Pt/TiO2 hydrogen photoproduction through Zr doping of the anatase structure: A spectroscopic and mechanistic study. Chemical Engineering Journal, 2020, 398, 125665.	6.6	18
92	Toward the Green Production of H ₂ : Binary Pt–Ru Promoted Nb-TiO ₂ Based Photocatalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 15671-15683.	3.2	17
93	The synergetic effect of cobalt and indium in ferrierite catalysts for selective catalytic reduction of nitric oxide with methane. Chemical Communications, 1998, , 2755-2756.	2.2	16
94	Novel (NH4)4[NiMo6O24H6]·5H2O – TiO2 composite system: Photo-oxidation of toluene under UV and sunlight-type illumination. Applied Catalysis B: Environmental, 2018, 238, 381-392.	10.8	16
95	Influence of the Ce–Zr promoter on Pd behaviour under dynamic CO/NO cycling conditions: a structural and chemical approach. Physical Chemistry Chemical Physics, 2013, 15, 8640.	1.3	15
96	Surface and Bulk Approach to Timeâ€resolved Characterization of Heterogeneous Catalysts. ChemCatChem, 2012, 4, 725-737.	1.8	14
97	Microemulsion: A versatile synthesis tool for photocatalysis. Current Opinion in Colloid and Interface Science, 2020, 49, 42-59.	3.4	14
98	Synthesis, Characterization, and Photocatalytic, Bactericidal, and Molecular Docking Analysis of Cu–Fe/TiO ₂ Photocatalysts: Influence of Metallic Impurities and Calcination Temperature on Charge Recombination. ACS Omega, 2021, 6, 26108-26118.	1.6	14
99	Thermo-photo production of hydrogen using ternary Pt-CeO2-TiO2 catalysts: A spectroscopic and mechanistic study. Chemical Engineering Journal, 2021, 425, 130641.	6.6	13
100	Oxide-based composites: applications in thermo-photocatalysis. Catalysis Science and Technology, 2021, 11, 6904-6930.	2.1	13
101	Influence of nanoparticles on elastic and optical properties of a polymeric matrix: Hypersonic studies on ethylene–vinyl alcohol copolymer–titania nanocomposites. European Polymer Journal, 2010, 46, 397-403.	2.6	12
102	Characterization of Photo-catalysts: From Traditional to Advanced Approaches. Topics in Current Chemistry, 2019, 377, 24.	3.0	12
103	Measuring and interpreting quantum efficiency of acid blue 9 photodegradation using TiO2-based catalysts. Applied Catalysis A: General, 2018, 550, 38-47.	2.2	11
104	(NH4)4[NiMo6O24H6].5H2O / g-C3N4 materials for selective photo-oxidation of C O and C C bonds. Applied Catalysis B: Environmental, 2020, 278, 119299.	10.8	11
105	Role of TiO2 morphological characteristics in EVOH–TiO2 nanocomposite films: self-degradation and self-cleaning properties. RSC Advances, 2013, 3, 8541.	1.7	10
106	Morphological and structural behavior of TiO ₂ nanoparticles in the presence of WO ₃ : crystallization of the oxide composite system. Physical Chemistry Chemical Physics, 2014, 16, 19540-19549.	1.3	10
107	Pt/B-g-C3N4 catalysts for hydrogen photo-production: Activity interpretation through a spectroscopic and intrinsic kinetic analysis. Journal of Environmental Chemical Engineering, 2021, 9, 106073.	3.3	8
108	Phaseâ€Contact Engineering in Mono―and Bimetallic Cuâ€Ni Coâ€catalysts for Hydrogen Photocatalytic Materials. Angewandte Chemie, 2018, 130, 1213-1217.	1.6	6

#	Article	IF	CITATIONS
109	Role of alkali-cyano group interaction in g-C3N4 based catalysts for hydrogen photo-production. Catalysis Today, 2022, 394-396, 25-33.	2.2	6
110	Interpreting quantum efficiency for energy and environmental applications of photo-catalytic materials. Current Opinion in Chemical Engineering, 2021, 33, 100712.	3.8	6
111	Chromism and catalysis shake hands. Nature Catalysis, 2018, 1, 643-644.	16.1	5
112	Assessing quantitatively charge carrier fate in 4-chlorophenol photocatalytic degradation using globular titania catalysts: Implications in quantum efficiency calculation. Journal of Environmental Chemical Engineering, 2021, 9, 106074.	3.3	5
113	Photodegradation of 2-propanol in gas phase over zirconium doped TiO2: Effect of Zr content. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113774.	2.0	5
114	Recent progress in the quantitative assessment and interpretation of photoactivity. Catalysis Reviews - Science and Engineering, 0, , 1-55.	5.7	5
115	Acoustic and optical phonons in EVOH–TiO2 nanocomposite films: Effect of aggregation. Journal of Luminescence, 2008, 128, 851-854.	1.5	4
116	Titanium Dioxideâ \in "Polymer Nanocomposites with Advanced Properties. , 2012, , 119-149.		3
117	Shepherding reaction intermediates to optimize H2 yield using composite-doped TiO2-based photocatalysts. Chemical Engineering Journal, 2022, 442, 136333.	6.6	3
118	Photocatalytic Nanooxides: The Case of TiO2 and ZnO. , 2013, , 245-266.		2
119	Sunlight active g-C3N4-based Mn+ (M Cu, Ni, Zn, Mn) – promoted catalysts: Sharing of nitrogen atoms as a door for optimizing photo-activity. Molecular Catalysis, 2020, 484, 110725.	1.0	2
120	Photocatalytic toluene degradation: braiding physico-chemical and intrinsic kinetic analyses. Reaction Chemistry and Engineering, 2020, 5, 1429-1440.	1.9	2
121	Metabolomics reveals synergy between Ag and g-C3N4 in Ag/g-C3N4 composite photocatalysts: a unique feature among Ag-doped biocidal materials. Metabolomics, 2021, 17, 53.	1.4	2
122	Pd-Pt bimetallic Nb-doped TiO2 for H2 photo-production: Gas and liquid phase processes. Molecular Catalysis, 2020, 481, 110240.	1.0	1
123	H2 Photoproduction Efficiency: Implications of the Reaction Mechanism as a Function of the Methanol/Water Mixture. Catalysts, 2022, 12, 402.	1.6	1
124	Hydrogen from oxygenated molecules. Applied Catalysis A: General, 2016, 518, 1.	2.2	0
125	Composite materials in thermo-photo catalysis. , 2021, , 409-420.		Ο