
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oral bioavailability of curcumin: problems and advancements. Journal of Drug Targeting, 2016, 24, 694-702.	4.4	381
2	Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. Journal of Colloid and Interface Science, 2011, 354, 116-123.	9.4	304
3	Progress in brain targeting drug delivery system by nasal route. Journal of Controlled Release, 2017, 268, 364-389.	9.9	256
4	New progress and prospects: The application of nanogel in drug delivery. Materials Science and Engineering C, 2016, 60, 560-568.	7.3	229
5	Biomedical applications of the graphene-based materials. Materials Science and Engineering C, 2016, 61, 953-964.	7.3	162
6	Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Materials Science and Engineering C, 2017, 71, 1267-1280.	7.3	161
7	Advances in lipid-based colloid systems as drug carrier for topic delivery. Journal of Controlled Release, 2014, 193, 90-99.	9.9	150
8	CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo–Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 34513-34523.	8.0	138
9	Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release, 2018, 291, 37-64.	9.9	134
10	Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids and Surfaces B: Biointerfaces, 2015, 128, 322-330.	5.0	121
11	Biomedical application and controlled drug release of electrospun fibrous materials. Materials Science and Engineering C, 2018, 90, 750-763.	7.3	107
12	Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses. Journal of Controlled Release, 2018, 290, 150-164.	9.9	103
13	Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Development and Industrial Pharmacy, 2010, 36, 1225-1234.	2.0	102
14	Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration. Colloids and Surfaces B: Biointerfaces, 2014, 114, 20-27.	5.0	97
15	Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydrate Polymers, 2015, 133, 391-399.	10.2	97
16	Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. Journal of Controlled Release, 2019, 309, 106-124.	9.9	94
17	Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. Journal of Nanoparticle Research, 2010, 12, 3111-3122.	1.9	81
18	Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111284.	5.0	77

#	Article	IF	CITATIONS
19	Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2014, 123, 778-786.	5.0	72
20	Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration. Colloids and Surfaces B: Biointerfaces, 2016, 141, 345-354.	5.0	71
21	Tumor targeting strategies for chitosan-based nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 148, 460-473.	5.0	63
22	Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. Journal of Colloid and Interface Science, 2017, 496, 311-326.	9.4	61
23	Redox/enzyme sensitive chondroitin sulfate-based self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma. Carbohydrate Polymers, 2018, 184, 82-93.	10.2	61
24	Nanostructured lipid carriers for oral delivery of baicalin: In vitro and in vivo evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 466, 154-159.	4.7	59
25	Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. Journal of Controlled Release, 2018, 272, 114-144.	9.9	59
26	The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. Journal of Controlled Release, 2021, 335, 1-20.	9.9	59
27	The synthesis, self-assembling, and biocompatibility of a novel O-carboxymethyl chitosan cholate decorated with glycyrrhetinic acid. Carbohydrate Polymers, 2014, 111, 753-761.	10.2	53
28	Current development in the formulations of non-injection administration of paclitaxel. International Journal of Pharmaceutics, 2018, 542, 242-252.	5.2	52
29	Chondroitin sulfate-based nanoparticles for enhanced chemo-photodynamic therapy overcoming multidrug resistance and lung metastasis of breast cancer. Carbohydrate Polymers, 2021, 254, 117459.	10.2	51
30	Multifunctional mesoporous silica nanocarriers for stimuli-responsive target delivery of anticancer drugs. RSC Advances, 2016, 6, 92073-92091.	3.6	50
31	Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties. Journal of Nanobiotechnology, 2018, 16, 68.	9.1	49
32	Heparin-reduced graphene oxide nanocomposites for curcumin delivery: <i>in vitro</i> , <i>in vivo</i> and molecular dynamics simulation study. Biomaterials Science, 2019, 7, 1011-1027.	5.4	49
33	Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. Journal of Controlled Release, 2020, 323, 333-349.	9.9	49
34	Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer. Journal of Colloid and Interface Science, 2021, 598, 213-228.	9.4	49
35	Development of a folate-modified curcumin loaded micelle delivery system for cancer targeting. Colloids and Surfaces B: Biointerfaces, 2014, 121, 206-213.	5.0	48
36	Lipopolysaccharide animal models of Parkinson's disease: Recent progress and relevance to clinical disease. Brain, Behavior, & Immunity - Health, 2020, 4, 100060.	2.5	48

#	Article	IF	CITATIONS
37	Advances in Hyaluronic Acid-Based Drug Delivery Systems. Current Drug Targets, 2016, 17, 720-730.	2.1	48
38	Lipid nanocapsules for transdermal delivery of ropivacaine: in vitro and in vivo evaluation. International Journal of Pharmaceutics, 2014, 471, 103-111.	5.2	45
39	Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride. Materials Science and Engineering C, 2017, 75, 198-206.	7.3	45
40	Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Drug Delivery, 2018, 25, 780-796.	5.7	44
41	Preparation, optimization, characterization and cytotoxicity in vitro of Baicalin-loaded mixed micelles. Journal of Colloid and Interface Science, 2014, 434, 40-47.	9.4	42
42	A Transferrin Receptor-Targeted Liposomal Formulation for Docetaxel. Journal of Nanoscience and Nanotechnology, 2010, 10, 5129-5136.	0.9	40
43	The role of glycyrrhetinic acid modification on preparation and evaluation of quercetin-loaded chitosan-based self-aggregates. Journal of Colloid and Interface Science, 2015, 460, 87-96.	9.4	40
44	Self-assembled nanoparticles based on chondroitin sulfate-deoxycholic acid conjugates for docetaxel delivery: Effect of degree of substitution of deoxycholic acid. Colloids and Surfaces B: Biointerfaces, 2016, 146, 235-244.	5.0	40
45	Ethosomes for skin delivery of ropivacaine: preparation, characterization and <i>ex vivo</i> penetration properties. Journal of Liposome Research, 2015, 25, 316-324.	3.3	38
46	Preparation, Characterization and Pharmacokinetics of Folate Receptor-Targeted Liposomes for Docetaxel Delivery. Journal of Nanoscience and Nanotechnology, 2009, 9, 2155-2161.	0.9	37
47	pH-responsive copolymers based on pluronic P123-poly(β-amino ester): Synthesis, characterization and application of copolymer micelles. Colloids and Surfaces B: Biointerfaces, 2016, 142, 114-122.	5.0	35
48	A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. Journal of Drug Targeting, 2021, 29, 687-702.	4.4	35
49	Advances in curcumin-loaded nanopreparations: improving bioavailability and overcoming inherent drawbacks. Journal of Drug Targeting, 2019, 27, 917-931.	4.4	34
50	Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydrate Polymers, 2020, 233, 115837.	10.2	34
51	Recent Developments of Phototherapy Based on Graphene Family Nanomaterials. Current Medicinal Chemistry, 2017, 24, 268-291.	2.4	34
52	Self-assembled micelles based on Chondroitin sulfate/poly (d , l -lactideco-glycolide) block copolymers for doxorubicin delivery. Journal of Colloid and Interface Science, 2017, 492, 101-111.	9.4	33
53	Recent advances in electrospun for drug delivery purpose. Journal of Drug Targeting, 2019, 27, 270-282.	4.4	33
54	NIR-triggerable ROS-responsive cluster-bomb-like nanoplatform for enhanced tumor penetration, phototherapy efficiency and antitumor immunity. Biomaterials, 2021, 278, 121135.	11.4	33

#	Article	IF	CITATIONS
55	Recent Advances in Active Hepatic Targeting Drug Delivery System. Current Drug Targets, 2014, 15, 573-599.	2.1	33
56	Preparation, characterization and pharmacokinetics of Amoitone B-loaded long circulating nanostructured lipid carriers. Colloids and Surfaces B: Biointerfaces, 2014, 114, 255-260.	5.0	32
57	Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. Journal of Colloid and Interface Science, 2019, 553, 567-580.	9.4	31
58	Redox-responsive nanoparticles based on Chondroitin Sulfate and Docetaxel prodrug for tumor targeted delivery of Docetaxel. Carbohydrate Polymers, 2021, 255, 117393.	10.2	31
59	Galactosamine-modified PEG-PLA/TPGS micelles for the oral delivery of curcumin. International Journal of Pharmaceutics, 2021, 595, 120227.	5.2	31
60	Oxygen-carrying nanoparticle-based chemo-sonodynamic therapy for tumor suppression and autoimmunity activation. Biomaterials Science, 2021, 9, 3989-4004.	5.4	29
61	Recent progress of functionalised graphene oxide in cancer therapy. Journal of Drug Targeting, 2019, 27, 125-144.	4.4	28
62	Preparation and <i>in vitro</i> and <i>in vivo</i> evaluation of quercetin-loaded mixed micelles for oral delivery. Bioscience, Biotechnology and Biochemistry, 2018, 82, 238-246.	1.3	27
63	The development of stimuli-responsive polymeric micelles for effective delivery of chemotherapeutic agents. Journal of Drug Targeting, 2018, 26, 753-765.	4.4	26
64	Insight into the role of dual-ligand modification in low molecular weight heparin based nanocarrier for targeted delivery of doxorubicin. International Journal of Pharmaceutics, 2017, 523, 427-438.	5.2	25
65	Recent progresses in bioadhesive microspheres via transmucosal administration. Colloids and Surfaces B: Biointerfaces, 2016, 140, 361-372.	5.0	23
66	PEGylated long circulating nanostructured lipid carriers for Amoitone B: Preparation, cytotoxicity and intracellular uptake. Journal of Colloid and Interface Science, 2014, 428, 49-56.	9.4	22
67	Multifunctional Polyethylene Glycol (PEG)-Poly (Lactic-Co-Glycolic Acid) (PLGA)-Based Nanoparticles Loading Doxorubicin and Tetrahydrocurcumin for Combined Chemoradiotherapy of Glioma. Medical Science Monitor, 2019, 25, 9737-9751.	1.1	22
68	Development of Effective Tumor Vaccine Strategies Based on Immune Response Cascade Reactions. Advanced Healthcare Materials, 2021, 10, e2100299.	7.6	20
69	RVG-functionalized reduction sensitive micelles for the effective accumulation of doxorubicin in brain. Journal of Nanobiotechnology, 2021, 19, 251.	9.1	20
70	The effect of incubation conditions on the hemolytic properties of unmodified graphene oxide with various concentrations. RSC Advances, 2016, 6, 68322-68334.	3.6	18
71	A sonosensitiserâ€based polymeric nanoplatform for chemoâ€sonodynamic combination therapy of lung cancer. Journal of Nanobiotechnology, 2021, 19, 57.	9.1	18
72	A liposomal delivery vehicle for the anticancer agent gossypol. Anticancer Research, 2008, 28, 2801-5.	1.1	18

#	Article	IF	CITATIONS
73	Novel star-type methoxy-poly(ethylene glycol) (PEG)–poly(ε-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	17
74	The construction and characterization of hybrid paclitaxel-in-micelle-in-liposome systems for enhanced oral drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 160, 572-580.	5.0	17
75	Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111914.	5.0	17
76	Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	16
77	Progress in Intra-Articular Drug Delivery Systems for Osteoarthritis. Current Drug Targets, 2014, 15, 888-900.	2.1	16
78	Research progress of tumor targeted drug delivery based on PD-1/PD-L1. International Journal of Pharmaceutics, 2022, 616, 121527.	5.2	16
79	Research Progress in Bioinspired Drug Delivery Systems. Expert Opinion on Drug Delivery, 2020, 17, 1269-1288.	5.0	15
80	A novel progress of drug delivery system for organelle targeting in tumour cells. Journal of Drug Targeting, 2021, 29, 12-28.	4.4	15
81	Progress in tumour-targeted drug delivery based on cell-penetrating peptides. Journal of Drug Targeting, 2022, 30, 46-60.	4.4	15
82	A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin. Drug Development and Industrial Pharmacy, 2021, 47, 839-856.	2.0	15
83	Quantitative prediction of the bitterness of atomoxetine hydrochloride and taste-masked using hydroxypropyl-β-cyclodextrin: A biosensor evaluation and interaction study. Asian Journal of Pharmaceutical Sciences, 2020, 15, 492-505.	9.1	14
84	Advances in Functionalized Mesoporous Silica Nanoparticles for Tumor Targeted Drug Delivery and Theranostics. Current Pharmaceutical Design, 2017, 23, 3367-3382.	1.9	14
85	The enhanced effect of tetrahydrocurcumin on radiosensitivity of glioma cells. Journal of Pharmacy and Pharmacology, 2018, 70, 749-759.	2.4	12
86	The progresses in curcuminoids-based metal complexes: especially in cancer therapy. Future Medicinal Chemistry, 2019, 11, 1035-1056.	2.3	12
87	Current advances in versatile metal-organic frameworks for cancer therapy. Journal of Drug Delivery Science and Technology, 2021, 61, 102266.	3.0	11
88	Research progress in tumor targeted immunotherapy. Expert Opinion on Drug Delivery, 2021, 18, 1067-1090.	5.0	11
89	Tumor microenvironment-responsive size-switchable drug delivery nanosystems. Expert Opinion on Drug Delivery, 2022, 19, 221-234.	5.0	11
90	A molybdenum oxide-based degradable nanosheet for combined chemo-photothermal therapy to improve tumor immunosuppression and suppress distant tumors and lung metastases. Journal of Nanobiotechnology, 2021, 19, 428.	9.1	10

#	Article	IF	CITATIONS
91	Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. Journal of Drug Targeting, 2020, 28, 993-1011.	4.4	8
92	Advances in autophagy as a target in the treatment of tumours. Journal of Drug Targeting, 2022, 30, 166-187.	4.4	7
93	Targeted Drug Delivery for Cardiovascular and Cerebrovascular Diseases. Current Drug Targets, 2016, 17, 467-474.	2.1	6
94	The development of a redox-sensitive curcumin conjugated chitosan oligosaccharide nanocarrier for the efficient delivery of docetaxel to glioma cells. Annals of Translational Medicine, 2022, 10, 297-297.	1.7	5
95	Mesoporous Silica Carrier-Based Composites for Taste-Masking of Bitter Drug: Fabrication and Palatability Evaluation. AAPS PharmSciTech, 2022, 23, 75.	3.3	3