
## Guido Serini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072685/publications.pdf Version: 2024-02-01



CHIDO SEDINI

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Tumoral Neuroligin 1 Promotes Cancer–Nerve Interactions and Synergizes with the Glial Cell<br>Line-Derived Neurotrophic Factor. Cells, 2022, 11, 280.                            | 1.8 | 6         |
| 2  | TFEB controls integrin-mediated endothelial cell adhesion by the regulation of cholesterol metabolism. Angiogenesis, 2022, 25, 471-492.                                          | 3.7 | 10        |
| 3  | METâ^†14 promotes a ligand-dependent, AKT-driven invasive growth. Life Science Alliance, 2022, 5, e202201409.                                                                    | 1.3 | 7         |
| 4  | Optimality in Self-Organized Molecular Sorting. Physical Review Letters, 2021, 126, 088101.                                                                                      | 2.9 | 7         |
| 5  | The roles of integrins in cancer. Faculty Reviews, 2021, 10, 45.                                                                                                                 | 1.7 | 21        |
| 6  | ESDN inhibits melanoma progression by blocking E-selectin expression in endothelial cells via STAT3.<br>Cancer Letters, 2021, 510, 13-23.                                        | 3.2 | 4         |
| 7  | LPHN2 inhibits vascular permeability by differential control of endothelial cell adhesion. Journal of<br>Cell Biology, 2021, 220, .                                              | 2.3 | 15        |
| 8  | Quantifying Polarized Extracellular Matrix Secretion in Cultured Endothelial Cells. Methods in<br>Molecular Biology, 2021, 2217, 301-311.                                        | 0.4 | 2         |
| 9  | Angiogenesis: The Importance of RHOJ-Mediated Trafficking of Active Integrins. Current Biology, 2020, 30, R652-R654.                                                             | 1.8 | 5         |
| 10 | Axonal precursor mi <scp>RNA</scp> s hitchhike on endosomesÂand locally regulate the development of neural circuits. EMBO Journal, 2020, 39, e102513.                            | 3.5 | 57        |
| 11 | Conformationally active integrin endocytosis and traffic: why, where, when and how?. Biochemical Society Transactions, 2020, 48, 83-93.                                          | 1.6 | 30        |
| 12 | Distinct retrograde microtubule motor sets drive early and late endosome transport. EMBO Journal, 2020, 39, e103661.                                                             | 3.5 | 22        |
| 13 | Rhomboid-Like-2 Intramembrane Protease Mediates Metalloprotease-Independent Regulation of<br>Cadherins. International Journal of Molecular Sciences, 2019, 20, 5958.             | 1.8 | 6         |
| 14 | Kinesin-2 Controls the Motility of RAB5 Endosomes and Their Association with the Spindle in Mitosis.<br>International Journal of Molecular Sciences, 2018, 19, 2575.             | 1.8 | 4         |
| 15 | A rationally designed NRP1-independent superagonist SEMA3A mutant is an effective anticancer agent.<br>Science Translational Medicine, 2018, 10, .                               | 5.8 | 46        |
| 16 | TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase<br>Rap1. Journal of Cell Biology, 2017, 216, 2107-2130.                        | 2.3 | 66        |
| 17 | Sema3F (Semaphorin 3F) Selectively Drives an Extraembryonic Proangiogenic Program.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1710-1721.                   | 1.1 | 12        |
| 18 | An Electrical Impedance-Based Method for Quantitative Real-Time Analysis of Semaphorin-Elicited<br>Endothelial Cell Collapse. Methods in Molecular Biology, 2017, 1493, 195-207. | 0.4 | 4         |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | PPFIA1 drives active $\hat{I}\pm5\hat{I}^21$ integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis. Nature Communications, 2016, 7, 13546.          | 5.8 | 72        |
| 20 | Class 3 semaphorins in cardiovascular development. Cell Adhesion and Migration, 2016, 10, 641-651.                                                                                   | 1.1 | 40        |
| 21 | Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism. Oncotarget, 2016, 7, 712-728. | 0.8 | 13        |
| 22 | Abstract 3372: Semaphorin 3A normalizes the tumor vasculature and impairs tumor progression in a Nrp-1-independent manner. , 2016, , .                                               |     | 0         |
| 23 | Bad vessels beware! Semaphorins will sort you out!. EMBO Molecular Medicine, 2015, 7, 1251-1253.                                                                                     | 3.3 | 11        |
| 24 | Linifanib: current status and future potential in cancer therapy. Expert Review of Anticancer Therapy,<br>2015, 15, 677-687.                                                         | 1.1 | 21        |
| 25 | Class 3 Semaphorin in Angiogenesis and Lymphangiogenesis. Chemical Immunology and Allergy, 2014, 99,<br>71-88.                                                                       | 1.7 | 15        |
| 26 | Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nature Cell<br>Biology, 2014, 16, 931-941.                                                         | 4.6 | 107       |
| 27 | The GTPase-Activating Protein RN-tre Controls Focal Adhesion Turnover and Cell Migration. Current Biology, 2013, 23, 2355-2364.                                                      | 1.8 | 42        |
| 28 | Class 3 semaphorins: physiological vascular normalizing agents for anti ancer therapy. Journal of<br>Internal Medicine, 2013, 273, 138-155.                                          | 2.7 | 37        |
| 29 | Tivantinib (ARQ197) Displays Cytotoxic Activity That Is Independent of Its Ability to Bind MET. Clinical Cancer Research, 2013, 19, 2381-2392.                                       | 3.2 | 157       |
| 30 | Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures.<br>Journal of Cell Biology, 2013, 203, 359-372.                                | 2.3 | 45        |
| 31 | Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures.<br>Journal of General Physiology, 2013, 142, 1425OIA43.                        | 0.9 | Ο         |
| 32 | Neuropilin-1–Dependent Regulation of EGF-Receptor Signaling. Cancer Research, 2012, 72, 5801-5811.                                                                                   | 0.4 | 84        |
| 33 | The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Research, 2012, 22, 1479-1501.              | 5.7 | 97        |
| 34 | The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. Journal of Cell<br>Biology, 2012, 196, 37-46.                                                      | 2.3 | 44        |
| 35 | Neuropilin-1 Identifies a Subset of Bone Marrow Gr1â^' Monocytes That Can Induce Tumor Vessel<br>Normalization and Inhibit Tumor Growth. Cancer Research, 2012, 72, 6371-6381.       | 0.4 | 51        |
| 36 | Regulation of adhesion site dynamics by integrin traffic. Current Opinion in Cell Biology, 2012, 24, 582-591.                                                                        | 2.6 | 45        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. Journal of Clinical Investigation, 2012, 122, 1832-1848.                                                       | 3.9 | 154       |
| 38 | A Bistable Model of Cell Polarity. PLoS ONE, 2012, 7, e30977.                                                                                                                                                                   | 1.1 | 33        |
| 39 | Abstract SY41-04: Targeting Semaphorin 3A: A new tool to normalize tumor vasculature and to overcome the evasive resistance to the anti-angiogenic therapy. , 2012, , .                                                         |     | 0         |
| 40 | Increasing traffic on vascular routes. Molecular Aspects of Medicine, 2011, 32, 112-122.                                                                                                                                        | 2.7 | 11        |
| 41 | Regulation of integrins by conformation and traffic: it takes two to tango. Molecular BioSystems, 2011, 7, 2539.                                                                                                                | 2.9 | 8         |
| 42 | Nervous vascular parallels: axon guidance and beyond. International Journal of Developmental<br>Biology, 2011, 55, 439-445.                                                                                                     | 0.3 | 27        |
| 43 | Diacylglycerol kinase α mediates HGF-induced Rac activation and membrane ruffling by regulating atypical PKC and RhoGDI. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4182-4187. | 3.3 | 58        |
| 44 | Integrin signaling and lung cancer. Cell Adhesion and Migration, 2010, 4, 124-129.                                                                                                                                              | 1.1 | 47        |
| 45 | Symmetry breaking mechanism for epithelial cell polarization. Physical Review E, 2009, 80, 031919.                                                                                                                              | 0.8 | 10        |
| 46 | Microenvironment drives the endothelial or neural fate of differentiating embryonic stem cells<br>coexpressing neuropilinâ€1 and Flkâ€1. FASEB Journal, 2009, 23, 68-78.                                                        | 0.2 | 17        |
| 47 | Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. Journal of Clinical Investigation, 2009, 119, 3356-72.                              | 3.9 | 167       |
| 48 | Neuropilin-1/GIPC1 Signaling Regulates α5β1 Integrin Traffic and Function in Endothelial Cells. PLoS<br>Biology, 2009, 7, e1000025.                                                                                             | 2.6 | 246       |
| 49 | Semaphorins and tumor angiogenesis. Angiogenesis, 2009, 12, 187-193.                                                                                                                                                            | 3.7 | 46        |
| 50 | Angiogenesis: aÂbalancing act between integrin activation andÂinhibition?. European Cytokine Network,<br>2009, 20, 191-196.                                                                                                     | 1.1 | 9         |
| 51 | Modelling of 3D Early Blood Vessel Formation: Simulations and Morphological Analysis. AIP<br>Conference Proceedings, 2008, , .                                                                                                  | 0.3 | 1         |
| 52 | Besides adhesion: new perspectives of integrin functions in angiogenesis. Cardiovascular Research,<br>2008, 78, 213-222.                                                                                                        | 1.8 | 55        |
| 53 | APâ€2α and APâ€2γ regulate tumor progression via specific genetic programs. FASEB Journal, 2008, 22,<br>2702-2714.                                                                                                              | 0.2 | 69        |
| 54 | Integrins team up with tyrosine kinase receptors and plexins to control angiogenesis. Current<br>Opinion in Hematology, 2008, 15, 235-242.                                                                                      | 1.2 | 25        |

| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A Simulation Environment for Directional Sensing as a Phase Separation Process. Science's STKE:<br>Signal Transduction Knowledge Environment, 2007, 2007, pl1-pl1.     | 4.1  | 6         |
| 56 | Integrins: A flexible platform for endothelial vascular tyrosine kinase receptors. Autoimmunity Reviews, 2007, 7, 18-22.                                               | 2.5  | 17        |
| 57 | 3D simulations of early blood vessel formation. Journal of Computational Physics, 2007, 225, 2283-2300.                                                                | 1.9  | 11        |
| 58 | Embryonic cleavage modeling as a computational approach to sphere packing problem. Journal of<br>Theoretical Biology, 2007, 245, 77-82.                                | 0.8  | 4         |
| 59 | Integrins and angiogenesis: A sticky business. Experimental Cell Research, 2006, 312, 651-658.                                                                         | 1.2  | 186       |
| 60 | Loss of inhibitory semaphorin 3A (SEMA3A) autocrine loops in bone marrow endothelial cells of patients with multiple myeloma. Blood, 2006, 108, 1661-1667.             | 0.6  | 79        |
| 61 | Semaphoring Vascular Morphogenesis. Endothelium: Journal of Endothelial Cell Research, 2006, 13,<br>81-91.                                                             | 1.7  | 49        |
| 62 | Role of repulsive factors in vascularization dynamics. Physical Review E, 2006, 73, 041917.                                                                            | 0.8  | 5         |
| 63 | A Computational Model for Eukaryotic Directional Sensing. Lecture Notes in Computer Science, 2006, ,<br>184-195.                                                       | 1.0  | 0         |
| 64 | Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood, 2005, 105, 4321-4329.                                                                         | 0.6  | 226       |
| 65 | Stable interaction between α5β1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. Journal of Cell Biology, 2005, 170, 993-1004. | 2.3  | 162       |
| 66 | Diffusion-limited phase separation in eukaryotic chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16927-16932.  | 3.3  | 85        |
| 67 | Common Cues in Vascular and Axon Guidance. Physiology, 2004, 19, 348-354.                                                                                              | 1.6  | 39        |
| 68 | Cell Directional and chemotaxis in vascular morphogenesis. Bulletin of Mathematical Biology, 2004,<br>66, 1851-1873.                                                   | 0.9  | 55        |
| 69 | Modeling the early stages of vascular network assembly. EMBO Journal, 2003, 22, 1771-1779.                                                                             | 3.5  | 280       |
| 70 | Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature, 2003, 424, 391-397.                                                        | 13.7 | 546       |
| 71 | Percolation, Morphogenesis, and Burgers Dynamics in Blood Vessels Formation. Physical Review<br>Letters, 2003, 90, 118101.                                             | 2.9  | 222       |
| 72 | Temporal and Spatial Modulation of Rho GTPases during in Vitro Formation of Capillary Vascular<br>Network. Journal of Biological Chemistry, 2003, 278, 50702-50713.    | 1.6  | 64        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tie-2–dependent activation of RhoA and Rac1 participates in endothelial cell motility triggered by angiopoietin-1. Blood, 2003, 102, 2482-2490.                                                   | 0.6 | 57        |
| 74 | In vivoactivation of JAK2/STATâ€3 pathway during angiogenesis induced by GM SF. FASEB Journal, 2002, 16, 1-19.                                                                                    | 0.2 | 126       |
| 75 | Interactions between endothelial cells and HIV-1. International Journal of Biochemistry and Cell<br>Biology, 2001, 33, 371-390.                                                                   | 1.2 | 59        |
| 76 | Dynamic modules and heterogeneity of function: a lesson from tyrosine kinase receptors in endothelial cells. EMBO Reports, 2001, 2, 763-767.                                                      | 2.0 | 25        |
| 77 | Loss of E-cadherin tyrosine phosphorylation in human cancers. Trends in Molecular Medicine, 1999, 5, 336.                                                                                         | 2.6 | 2         |
| 78 | Mechanisms of Myofibroblast Activity and Phenotypic Modulation. Experimental Cell Research, 1999, 250, 273-283.                                                                                   | 1.2 | 536       |
| 79 | The Fibronectin Domain ED-A Is Crucial for Myofibroblastic Phenotype Induction by Transforming<br>Growth Factor-β1. Journal of Cell Biology, 1998, 142, 873-881.                                  | 2.3 | 741       |
| 80 | Growth Factor–dependent Activation of αvβ3 Integrin in Normal Epithelial Cells: Implications for Tumor<br>Invasion. Journal of Cell Biology, 1998, 142, 1145-1156.                                | 2.3 | 110       |
| 81 | Modulation of alpha-smooth muscle actin expression in fibroblasts by transforming growth<br>factor-beta isoforms: an in vivo and in vitro study. Wound Repair and Regeneration, 1996, 4, 278-287. | 1.5 | 70        |
| 82 | Changes in Integrin and E-Cadherin Expression in Neoplastic Versus Normal Thyroid Tissue. Journal of the National Cancer Institute, 1996, 88, 442-449.                                            | 3.0 | 93        |
| 83 | Overexpression of the C-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. Journal of Endocrinological Investigation, 1995, 18, 134-139.                        | 1.8 | 63        |
| 84 | Tracking endothelial cells during blood vessel networks assembly using active contours. , 0, , .                                                                                                  |     | 4         |
| 85 | Endocytosis and Exocytosis in Signal Transduction and in Cell Migration. , 0, , .                                                                                                                 |     | 0         |