## Chun-Lai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072567/publications.pdf Version: 2024-02-01



Сним-Глі Тнамс

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The effect of wind speed averaging time on the study of soil wind erosion on typical land surfaces.<br>Aeolian Research, 2022, 54, 100763.                                                                                                         | 2.7 | 5         |
| 2  | A modified aeolian flux model applicable for various soil particle characteristics. Catena, 2022, 212, 106042.                                                                                                                                     | 5.0 | 3         |
| 3  | A comparison of the aerodynamic characteristics of four kinds of land surface in wind erosion areas of northern China. Catena, 2022, 212, 106112.                                                                                                  | 5.0 | 4         |
| 4  | The varying fetch effect of aeolian sand transport above a gobi surface and its implication for gobi development process. International Soil and Water Conservation Research, 2022, 10, 623-634.                                                   | 6.5 | 3         |
| 5  | Field investigation of the fetch effect and essential conditions for saturated sand flow. Earth<br>Surface Processes and Landforms, 2022, 47, 2299-2309.                                                                                           | 2.5 | 2         |
| 6  | A general model for predicting aeolian transport rate over sand surfaces with vegetation cover.<br>Earth Surface Processes and Landforms, 2022, 47, 2471-2482.                                                                                     | 2.5 | 6         |
| 7  | Grain size characteristics of aeolian sands and their implications for the aeolian dynamics of<br>dunefields within a river valley on the southern Tibet Plateau: A case study from the Yarlung Zangbo<br>river valley. Catena, 2021, 196, 104794. | 5.0 | 12        |
| 8  | Field observations of sand flux and dust emission above a gobi desert surface. Journal of Soils and Sediments, 2021, 21, 1815-1825.                                                                                                                | 3.0 | 8         |
| 9  | A modified Raupach's model applicable for shearâ€stress partitioning on surfaces covered with dense<br>and flatâ€shaped gravel roughness elements. Earth Surface Processes and Landforms, 2021, 46, 907-920.                                       | 2.5 | 4         |
| 10 | A model of the sand transport rate that accounts for temporal evolution of the bed. Geomorphology, 2021, 378, 107616.                                                                                                                              | 2.6 | 4         |
| 11 | Comparison of dust emission ability of sand desert, gravel desert (Gobi), and farmland in northern<br>China. Catena, 2021, 201, 105215.                                                                                                            | 5.0 | 15        |
| 12 | Effect of transverse ridge microtopography on the surface shear stress distribution and soil wind erosion. Soil and Tillage Research, 2020, 198, 104548.                                                                                           | 5.6 | 2         |
| 13 | Studying the spatial and temporal changes in aeolian sand transport in a wind tunnel using 3D terrestrial laser scanning. European Journal of Soil Science, 2020, 71, 898-908.                                                                     | 3.9 | 3         |
| 14 | Abrasion of soil clods with different textures and moisture contents in sand flow environment.<br>Aeolian Research, 2020, 46, 100614.                                                                                                              | 2.7 | 6         |
| 15 | Application of a new wind driving force model in soil wind erosion area of northern China. Journal of Arid Land, 2020, 12, 423-435.                                                                                                                | 2.3 | 4         |
| 16 | Spatial heterogeneity of surface sediment grain size and aeolian activity in the gobi desert region of northwest China. Catena, 2020, 188, 104469.                                                                                                 | 5.0 | 21        |
| 17 | Experimental Investigation of the Aerodynamic Roughness Length for Flexible Plants. Boundary-Layer<br>Meteorology, 2019, 172, 397-416.                                                                                                             | 2.3 | 19        |
| 18 | Effects of ridge height and spacing on the near-surface airflow field and on wind erosion of a sandy soil: Results of a wind tunnel study. Soil and Tillage Research, 2019, 186, 94-104.                                                           | 5.6 | 11        |

CHUN-LAI ZHANG

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The effect of wind speed averaging time on sand transport estimates. Catena, 2019, 175, 286-293.                                                                                                                    | 5.0 | 15        |
| 20 | Wind tunnel tests of the dynamic processes that control wind erosion of a sand bed. Earth Surface Processes and Landforms, 2019, 44, 614-623.                                                                       | 2.5 | 7         |
| 21 | Grain-size distribution of surface sediments of climbing and falling dunes in the Zedang valley of the<br>Yarlung Zangbo River, southern Tibetan plateau. Journal of Earth System Science, 2019, 128, 1.            | 1.3 | 11        |
| 22 | Sediment grain–size characteristics and relevant correlations to the aeolian environment in China's<br>eastern desert region. Science of the Total Environment, 2018, 627, 586-599.                                 | 8.0 | 29        |
| 23 | Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using<br>Landsat images. Science of the Total Environment, 2018, 619-620, 1648-1659.                                      | 8.0 | 79        |
| 24 | Experimental Investigation on Shear-Stress Partitioning for Flexible Plants with Approximately Zero<br>Basal-to-Frontal Area Ratio in a Wind Tunnel. Boundary-Layer Meteorology, 2018, 169, 251-273.                | 2.3 | 21        |
| 25 | Unsteady aeolian saltation. European Physical Journal E, 2018, 41, 121.                                                                                                                                             | 1.6 | 4         |
| 26 | Spatial variation of topsoil features in soil wind erosion areas of northern China. Catena, 2018, 167, 429-439.                                                                                                     | 5.0 | 42        |
| 27 | Statistical characteristics of wind erosion events in the erosion area of Northern China. Catena, 2018, 167, 399-410.                                                                                               | 5.0 | 41        |
| 28 | Ecophysiological Responses of Three Tree Species to a High-Altitude Environment in the Southeastern<br>Tibetan Plateau. Forests, 2018, 9, 48.                                                                       | 2.1 | 20        |
| 29 | Coherent structures over flat sandy surfaces in aeolian environment. Catena, 2017, 159, 144-148.                                                                                                                    | 5.0 | 4         |
| 30 | Influence of dust storms on atmospheric particulate pollution and acid rain in northern China. Air<br>Quality, Atmosphere and Health, 2017, 10, 297-306.                                                            | 3.3 | 3         |
| 31 | Wind tunnel investigation of horizontal and vertical sand fluxes of ascending and descending sand particles in aeolian sand transport. Earth Surface Processes and Landforms, 2016, 41, 1647-1657.                  | 2.5 | 5         |
| 32 | Developing trend of aeolian desertification in China's Tibet Autonomous Region from 1977 to 2010.<br>Environmental Earth Sciences, 2016, 75, 1.                                                                     | 2.7 | 21        |
| 33 | Grain size distribution at four developmental stages of crescent dunes in the hinterland of the<br>Taklimakan Desert, China. Journal of Arid Land, 2016, 8, 722-733.                                                | 2.3 | 9         |
| 34 | Quantitative assessment of the relative roles of climate change and human activities in<br>desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena, 2016,<br>147, 789-796. | 5.0 | 156       |
| 35 | Characteristics of particle size for creeping and saltating sand grains in aeolian transport.<br>Sedimentology, 2015, 62, 1497-1511.                                                                                | 3.1 | 30        |
| 36 | Cogitation on developing a dynamic model of soil wind erosion. Science China Earth Sciences, 2015, 58, 462-473.                                                                                                     | 5.2 | 31        |

CHUN-LAI ZHANG

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Intermittency of aeolian saltation. European Physical Journal E, 2014, 37, 126.                                                                                                                            | 1.6 | 11        |
| 38 | Dust fall and biological soil crust distribution as indicators of the aeolian environment in China's<br>Shapotou railway protective system. Catena, 2014, 114, 107-118.                                    | 5.0 | 8         |
| 39 | The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid<br>environment: A case study from Mainling Valley, Qinghai–Tibet Plateau. Geomorphology, 2014, 224,<br>27-38.   | 2.6 | 22        |
| 40 | Sand flux and wind profiles in the saltation layer above a rounded dune top. Science China Earth<br>Sciences, 2014, 57, 523-533.                                                                           | 5.2 | 8         |
| 41 | Forces on a saltating grain in air. European Physical Journal E, 2013, 36, 112.                                                                                                                            | 1.6 | 7         |
| 42 | Spatial pattern of grain-size distribution in surface sediments as a result of variations in the aeolian<br>environment in China's Shapotou railway protective system. Aeolian Research, 2011, 3, 295-302. | 2.7 | 19        |
| 43 | Probability distribution functions for the initial liftoff velocities of saltating sand grains in air.<br>Journal of Geophysical Research, 2006, 111, .                                                    | 3.3 | 28        |
| 44 | Aerodynamic roughness of cultivated soil and its influences on soil erosion by wind in a wind tunnel.<br>Soil and Tillage Research, 2004, 75, 53-59.                                                       | 5.6 | 35        |
| 45 | The distribution of velocity and energy of saltating sand grains in a wind tunnel. Geomorphology, 2001, 36, 155-165.                                                                                       | 2.6 | 117       |
| 46 | Separating emitted dust from the total suspension in airflow based on the characteristics of PM10 vertical concentration profiles on a Gobi surface in northwestern China. Journal of Arid Land, 0, , .    | 2.3 | 1         |