Chun-Lai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072567/publications.pdf

Version: 2024-02-01

516710 477307 46 916 16 29 citations g-index h-index papers 48 48 48 670 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena, 2016, 147, 789-796.	5.0	156
2	The distribution of velocity and energy of saltating sand grains in a wind tunnel. Geomorphology, 2001, 36, 155-165.	2.6	117
3	Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images. Science of the Total Environment, 2018, 619-620, 1648-1659.	8.0	79
4	Spatial variation of topsoil features in soil wind erosion areas of northern China. Catena, 2018, 167, 429-439.	5.0	42
5	Statistical characteristics of wind erosion events in the erosion area of Northern China. Catena, 2018, 167, 399-410.	5.0	41
6	Aerodynamic roughness of cultivated soil and its influences on soil erosion by wind in a wind tunnel. Soil and Tillage Research, 2004, 75, 53-59.	5.6	35
7	Cogitation on developing a dynamic model of soil wind erosion. Science China Earth Sciences, 2015, 58, 462-473.	5.2	31
8	Characteristics of particle size for creeping and saltating sand grains in aeolian transport. Sedimentology, 2015, 62, 1497-1511.	3.1	30
9	Sediment grain–size characteristics and relevant correlations to the aeolian environment in China's eastern desert region. Science of the Total Environment, 2018, 627, 586-599.	8.0	29
10	Probability distribution functions for the initial liftoff velocities of saltating sand grains in air. Journal of Geophysical Research, 2006, 111 , .	3.3	28
11	The geomorphology and evolution of aeolian landforms within a river valley in a semi-humid environment: A case study from Mainling Valley, Qinghai–Tibet Plateau. Geomorphology, 2014, 224, 27-38.	2.6	22
12	Developing trend of aeolian desertification in China's Tibet Autonomous Region from 1977 to 2010. Environmental Earth Sciences, 2016, 75, 1.	2.7	21
13	Experimental Investigation on Shear-Stress Partitioning for Flexible Plants with Approximately Zero Basal-to-Frontal Area Ratio in a Wind Tunnel. Boundary-Layer Meteorology, 2018, 169, 251-273.	2.3	21
14	Spatial heterogeneity of surface sediment grain size and aeolian activity in the gobi desert region of northwest China. Catena, 2020, 188, 104469.	5.0	21
15	Ecophysiological Responses of Three Tree Species to a High-Altitude Environment in the Southeastern Tibetan Plateau. Forests, 2018, 9, 48.	2.1	20
16	Spatial pattern of grain-size distribution in surface sediments as a result of variations in the aeolian environment in China's Shapotou railway protective system. Aeolian Research, 2011, 3, 295-302.	2.7	19
17	Experimental Investigation of the Aerodynamic Roughness Length for Flexible Plants. Boundary-Layer Meteorology, 2019, 172, 397-416.	2.3	19
18	The effect of wind speed averaging time on sand transport estimates. Catena, 2019, 175, 286-293.	5.0	15

#	Article	IF	CITATIONS
19	Comparison of dust emission ability of sand desert, gravel desert (Gobi), and farmland in northern China. Catena, 2021, 201, 105215.	5.0	15
20	Grain size characteristics of aeolian sands and their implications for the aeolian dynamics of dunefields within a river valley on the southern Tibet Plateau: A case study from the Yarlung Zangbo river valley. Catena, 2021, 196, 104794.	5.0	12
21	Intermittency of aeolian saltation. European Physical Journal E, 2014, 37, 126.	1.6	11
22	Effects of ridge height and spacing on the near-surface airflow field and on wind erosion of a sandy soil: Results of a wind tunnel study. Soil and Tillage Research, 2019, 186, 94-104.	5.6	11
23	Grain-size distribution of surface sediments of climbing and falling dunes in the Zedang valley of the Yarlung Zangbo River, southern Tibetan plateau. Journal of Earth System Science, 2019, 128, 1.	1.3	11
24	Grain size distribution at four developmental stages of crescent dunes in the hinterland of the Taklimakan Desert, China. Journal of Arid Land, 2016, 8, 722-733.	2.3	9
25	Dust fall and biological soil crust distribution as indicators of the aeolian environment in China's Shapotou railway protective system. Catena, 2014, 114, 107-118.	5.0	8
26	Sand flux and wind profiles in the saltation layer above a rounded dune top. Science China Earth Sciences, 2014, 57, 523-533.	5.2	8
27	Field observations of sand flux and dust emission above a gobi desert surface. Journal of Soils and Sediments, 2021, 21, 1815-1825.	3.0	8
28	Forces on a saltating grain in air. European Physical Journal E, 2013, 36, 112.	1.6	7
29	Wind tunnel tests of the dynamic processes that control wind erosion of a sand bed. Earth Surface Processes and Landforms, 2019, 44, 614-623.	2.5	7
30	Abrasion of soil clods with different textures and moisture contents in sand flow environment. Aeolian Research, 2020, 46, 100614.	2.7	6
31	A general model for predicting aeolian transport rate over sand surfaces with vegetation cover. Earth Surface Processes and Landforms, 2022, 47, 2471-2482.	2.5	6
32	Wind tunnel investigation of horizontal and vertical sand fluxes of ascending and descending sand particles in aeolian sand transport. Earth Surface Processes and Landforms, 2016, 41, 1647-1657.	2.5	5
33	The effect of wind speed averaging time on the study of soil wind erosion on typical land surfaces. Aeolian Research, 2022, 54, 100763.	2.7	5
34	Coherent structures over flat sandy surfaces in aeolian environment. Catena, 2017, 159, 144-148.	5.0	4
35	Unsteady aeolian saltation. European Physical Journal E, 2018, 41, 121.	1.6	4
36	Application of a new wind driving force model in soil wind erosion area of northern China. Journal of Arid Land, 2020, 12, 423-435.	2.3	4

#	Article	IF	CITATIONS
37	A modified Raupach's model applicable for shearâ€stress partitioning on surfaces covered with dense and flatâ€shaped gravel roughness elements. Earth Surface Processes and Landforms, 2021, 46, 907-920.	2.5	4
38	A model of the sand transport rate that accounts for temporal evolution of the bed. Geomorphology, 2021, 378, 107616.	2.6	4
39	A comparison of the aerodynamic characteristics of four kinds of land surface in wind erosion areas of northern China. Catena, 2022, 212, 106112.	5.0	4
40	Influence of dust storms on atmospheric particulate pollution and acid rain in northern China. Air Quality, Atmosphere and Health, 2017, 10, 297-306.	3.3	3
41	Studying the spatial and temporal changes in aeolian sand transport in a wind tunnel using 3D terrestrial laser scanning. European Journal of Soil Science, 2020, 71, 898-908.	3.9	3
42	A modified aeolian flux model applicable for various soil particle characteristics. Catena, 2022, 212, 106042.	5.0	3
43	The varying fetch effect of aeolian sand transport above a gobi surface and its implication for gobi development process. International Soil and Water Conservation Research, 2022, 10, 623-634.	6.5	3
44	Effect of transverse ridge microtopography on the surface shear stress distribution and soil wind erosion. Soil and Tillage Research, 2020, 198, 104548.	5.6	2
45	Field investigation of the fetch effect and essential conditions for saturated sand flow. Earth Surface Processes and Landforms, 2022, 47, 2299-2309.	2.5	2
46	Separating emitted dust from the total suspension in airflow based on the characteristics of PM10 vertical concentration profiles on a Gobi surface in northwestern China. Journal of Arid Land, $0,$	2.3	1