
Linglin Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072522/publications.pdf Version: 2024-02-01

LINCLIN XIE

#	Article	IF	CITATIONS
1	Targeting TKI-Activated NFKB2-MIF/CXCLs-CXCR2 Signaling Pathways in FLT3 Mutated Acute Myeloid Leukemia Reduced Blast Viability. Biomedicines, 2022, 10, 1038.	3.2	7
2	Indole supplementation ameliorates MCD-induced NASH in mice. Journal of Nutritional Biochemistry, 2022, 107, 109041.	4.2	8
3	Disrupting Osr1 expression promoted hepatic steatosis and inflammation induced by high-fat diet in the mouse model. PLoS ONE, 2022, 17, e0268344.	2.5	3
4	Osr1 regulates hepatic inflammation and cell survival in the progression of non-alcoholic fatty liver disease. Laboratory Investigation, 2021, 101, 477-489.	3.7	11
5	<i>Mog1</i> to <i>tbx5â€eryab/hspb2</i> : A novel signalling network potentiates heart failure?. Acta Physiologica, 2021, 231, e13593.	3.8	Ο
6	Maternal highâ€fat diet disrupted oneâ€carbon metabolism in offspring, contributing to nonalcoholic fatty liver disease. Liver International, 2021, 41, 1305-1319.	3.9	15
7	Hyperglycemia results in significant pathophysiological changes of placental spiral artery remodeling and angiogenesis, further contributing to congenital defects. Frontiers in Bioscience, 2021, 26, 965.	2.1	3
8	Maternal diet intervention before pregnancy primes offspring lipid metabolism in liver. Laboratory Investigation, 2020, 100, 553-569.	3.7	21
9	In ovo hyperglycemia causes congenital limb defects in chicken embryos via disruption of cell proliferation and apoptosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165955.	3.8	4
10	Pregestational diet transition to normal-fat diet avoids the deterioration of pancreatic β-cell function in male offspring induced by maternal high-fat diet. Journal of Nutritional Biochemistry, 2020, 86, 108495.	4.2	5
11	Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2â^'/â^' mouse model of primary sclerosing cholangitis (PSC). EBioMedicine, 2019, 48, 130-142.	6.1	29
12	Gata4 regulates hedgehog signaling and Gata6 expression for outflow tract development. PLoS Genetics, 2019, 15, e1007711.	3.5	19
13	Sex-associated preventive effects of low-dose aspirin on obesity and non-alcoholic fatty liver disease in mouse offspring with over-nutrition in utero. Laboratory Investigation, 2019, 99, 244-259.	3.7	10
14	A long-term maternal diet transition from high-fat diet to normal fat diet during pre-pregnancy avoids adipose tissue inflammation in next generation. PLoS ONE, 2018, 13, e0209053.	2.5	17
15	A long-term maternal diet intervention is necessary to avoid the obesogenic effect of maternal high-fat diet in the offspring. Journal of Nutritional Biochemistry, 2018, 62, 210-220.	4.2	12
16	Gata4 potentiates second heart field proliferation and Hedgehog signaling for cardiac septation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1422-E1431.	7.1	53
17	Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring. PLoS ONE, 2017, 12, e0169581.	2.5	16
18	Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation. Human Molecular Genetics, 2016, 25, 1140-1151.	2.9	31

Linglin Xie

#	Article	IF	CITATIONS
19	Tbx5 and Osr1 interact to regulate posterior second heart field cell cycle progression for cardiac septation. Journal of Molecular and Cellular Cardiology, 2015, 85, 1-12.	1.9	38
20	Overexpression of IL-10 in C2D Macrophages Promotes a Macrophage Phenotypic Switch in Adipose Tissue Environments. PLoS ONE, 2014, 9, e86541.	2.5	12
21	Tbx5-Hedgehog Molecular Networks Are Essential in the Second Heart Field for Atrial Septation. Developmental Cell, 2012, 23, 280-291.	7.0	135
22	Evaluation of macrophage plasticity in brown and white adipose tissue. Cellular Immunology, 2011, 271, 124-133.	3.0	24
23	Interactive Changes between Macrophages and Adipocytes. Vaccine Journal, 2010, 17, 651-659.	3.1	59
24	Adiponectin and leptin are secreted through distinct trafficking pathways in adipocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 99-108.	3.8	62
25	Intracellular Trafficking and Secretion of Adiponectin Is Dependent on GGA-coated Vesicles. Journal of Biological Chemistry, 2006, 281, 7253-7259.	3.4	62