Sarah G Whaley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407246/publications.pdf

Version: 2024-02-01

		759233	1125743	
16	1,098	12	13	
papers	citations	h-index	g-index	
16	16	16	1772	
10	10	10	1//2	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Frontiers in Microbiology, 2016, 7, 2173.	3.5	531
2	Contribution of Clinically Derived Mutations in $<$ i>ERG11 $<$ /i> to Azole Resistance in Candida albicans. Antimicrobial Agents and Chemotherapy, 2015, 59, 450-460.	3.2	212
3	Azole Resistance in Candida glabrata. Current Infectious Disease Reports, 2016, 18, 41.	3.0	73
4	<i>UPC2A</i> Is Required for High-Level Azole Antifungal Resistance in Candida glabrata. Antimicrobial Agents and Chemotherapy, 2014, 58, 4543-4554.	3.2	43
5	Loss of C-5 Sterol Desaturase Activity Results in Increased Resistance to Azole and Echinocandin Antifungals in a Clinical Isolate of Candida parapsilosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	42
6	The <i>RTA3</i> Gene, Encoding a Putative Lipid Translocase, Influences the Susceptibility of Candida albicans to Fluconazole. Antimicrobial Agents and Chemotherapy, 2016, 60, 6060-6066.	3.2	40
7	Relative Contribution of the ABC Transporters Cdr1, Pdh1, and Snq2 to Azole Resistance in Candida glabrata. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	36
8	Oleate hydratase from Staphylococcus aureus protects against palmitoleic acid, the major antimicrobial fatty acid produced by mammalian skin. Journal of Biological Chemistry, 2019, 294, 9285-9294.	3.4	33
9	Branched-chain amino acid metabolism controls membrane phospholipid structure in Staphylococcus aureus. Journal of Biological Chemistry, 2021, 297, 101255.	3.4	23
10	Jij 1 Is a Negative Regulator of Pdr 1 -Mediated Fluconazole Resistance in Candida glabrata. MSphere, 2018, 3 , .	2.9	18
11	Impact of the Major Candida glabrata Triazole Resistance Determinants on the Activity of the Novel Investigational Tetrazoles VT-1598 and VT-1161. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	16
12	Chemical Exchanges between Multilateral Symbionts. Organic Letters, 2021, 23, 1648-1652.	4.6	16
13	Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria. Journal of Biological Chemistry, 2021, 297, 101434.	3.4	15
14	Initiation of Fatty Acid Synthesis by a Malonylâ€ACP Decarboxylase. FASEB Journal, 2021, 35, .	0.5	0
15	Alternate fatty acid synthesis initiation in Escherichia coli. FASEB Journal, 2020, 34, 1-1.	0.5	O
16	Amino Acid Metabolism Controls Fatty Acid Structure in <i>Staphylococcus aureus</i> , FASEB Journal, 2022, 36, .	0.5	0