Junqing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	H2K: A Heartbeat-Based Key Generation Framework for ECG and PPG Signals. IEEE Transactions on Mobile Computing, 2023, 22, 923-934.	3.9	5
2	Deep-Learning-Based Physical-Layer Secret Key Generation for FDD Systems. IEEE Internet of Things Journal, 2022, 9, 6081-6094.	5.5	27
3	Key Generation for Internet of Things. ACM Computing Surveys, 2022, 54, 1-37.	16.1	18
4	Reconfigurable Intelligent Surface Assisted Secret Key Generation in Quasi-Static Environments. IEEE Communications Letters, 2022, 26, 244-248.	2.5	18
5	Physical-Layer-Based Secure Communications for Static and Low-Latency Industrial Internet of Things. IEEE Internet of Things Journal, 2022, 9, 18392-18405.	5.5	2
6	Towards Scalable and Channel-Robust Radio Frequency Fingerprint Identification for LoRa. IEEE Transactions on Information Forensics and Security, 2022, 17, 774-787.	4.5	90
7	LoRaWAN Physical Layer-Based Attacks and Countermeasures, A Review. Sensors, 2022, 22, 3127.	2.1	10
8	A channel perceiving attack and the countermeasure on long-range IoT physical layer key generation. Computer Communications, 2022, 191, 108-118.	3.1	3
9	Fast and Secure Key Generation with Channel Obfuscation in Slowly Varying Environments. , 2022, , .		10
10	Encrypting Wireless Communications on the Fly Using One-Time Pad and Key Generation. IEEE Internet of Things Journal, 2021, 8, 357-369.	5.5	37
11	Sum Secret Key Rate Maximization for TDD Multi-User Massive MIMO Wireless Networks. IEEE Transactions on Information Forensics and Security, 2021, 16, 968-982.	4.5	27
12	Power Amplifier enabled RF Fingerprint Identification. , 2021, , .		3
13	Radio Frequency Fingerprint Identification for LoRa Using Spectrogram and CNN. , 2021, , .		45
14	NISA: Node Identification and Spoofing Attack Detection Based on Clock Features and Radio Information for Wireless Sensor Networks. IEEE Transactions on Communications, 2021, 69, 4691-4703.	4.9	13
15	Radio Frequency Fingerprint Identification for LoRa Using Deep Learning. IEEE Journal on Selected Areas in Communications, 2021, 39, 2604-2616.	9.7	79
16	Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification. IEEE Transactions on Information Forensics and Security, 2021, 16, 3974-3987.	4.5	62
17	Radio Frequency Fingerprint Identification for Security in Low-Cost IoT Devices. , 2021, , .		8
18	LTE Device Identification Based on RF Fingerprint with Multi-Channel Convolutional Neural Network. , 2021, , .		22

JUNQING ZHANG

#	Article	IF	CITATIONS
19	Deep Learning Based RF Fingerprint Identification Using Differential Constellation Trace Figure. IEEE Transactions on Vehicular Technology, 2020, 69, 1091-1095.	3.9	156
20	Experimental Investigation on Wireless Key Generation for Low-Power Wide-Area Networks. IEEE Internet of Things Journal, 2020, 7, 1745-1755.	5.5	32
21	Beam-Domain Secret Key Generation for Multi-User Massive MIMO Networks. , 2020, , .		5
22	A New Frontier for IoT Security Emerging From Three Decades of Key Generation Relying on Wireless Channels. IEEE Access, 2020, 8, 138406-138446.	2.6	73
23	Design of a Robust Radio-Frequency Fingerprint Identification Scheme for Multimode LFM Radar. IEEE Internet of Things Journal, 2020, 7, 10581-10593.	5.5	23
24	An Investigation of Using Loop-Back Mechanism for Channel Reciprocity Enhancement in Secret Key Generation. IEEE Transactions on Mobile Computing, 2019, 18, 507-519.	3.9	37
25	Design of a Hybrid RF Fingerprint Extraction and Device Classification Scheme. IEEE Internet of Things Journal, 2019, 6, 349-360.	5.5	167
26	Time-Modulated OFDM Directional Modulation Transmitters. IEEE Transactions on Vehicular Technology, 2019, 68, 8249-8253.	3.9	24
27	Machine Learning Based Attack Against Artificial Noise-Aided Secure Communication. , 2019, , .		3
28	Key Generation Based on Large Scale Fading. IEEE Transactions on Vehicular Technology, 2019, 68, 8222-8226.	3.9	3
29	Design of an Efficient OFDMA-Based Multi-User Key Generation Protocol. IEEE Transactions on Vehicular Technology, 2019, 68, 8842-8852.	3.9	15
30	Design of an Energy-Efficient Multidimensional Secure Constellation for 5G Communications. , 2019, , .		0
31	Physical Layer Key Generation in 5G and Beyond Wireless Communications: Challenges and Opportunities. Entropy, 2019, 21, 497.	1.1	58
32	Physical Layer Security for the Internet of Things: Authentication and Key Generation. IEEE Wireless Communications, 2019, 26, 92-98.	6.6	115
33	High-Agreement Uncorrelated Secret Key Generation Based on Principal Component Analysis Preprocessing. IEEE Transactions on Communications, 2018, 66, 3022-3034.	4.9	85
34	Securing M2M Transmissions Using Nonreconciled Secret Keys Generated from Wireless Channels. , 2018, , .		11
35	Channel-Envelope Differencing Eliminates Secret Key Correlation: LoRa-Based Key Generation in Low Power Wide Area Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 12462-12466.	3.9	52
36	On Radio Frequency Fingerprint Identification for DSSS Systems in Low SNR Scenarios. IEEE Communications Letters, 2018, 22, 2326-2329.	2.5	55

JUNQING ZHANG

#	Article	IF	CITATIONS
37	Constructing Reciprocal Channel Coefficients for Secret Key Generation in FDD Systems. IEEE Communications Letters, 2018, 22, 2487-2490.	2.5	30
38	Security Optimization of Exposure Region-Based Beamforming With a Uniform Circular Array. IEEE Transactions on Communications, 2018, 66, 2630-2641.	4.9	9
39	Design of an OFDM Physical Layer Encryption Scheme. IEEE Transactions on Vehicular Technology, 2017, 66, 2114-2127.	3.9	69
40	On the Key Generation From Correlated Wireless Channels. IEEE Communications Letters, 2017, 21, 961-964.	2.5	59
41	Secure Cooperative Single Carrier Systems Under Unreliable Backhaul and Dense Networks Impact. IEEE Access, 2017, 5, 18310-18324.	2.6	26
42	Phase error effects on distributed transmit beamforming for wireless communications. , 2017, , .		0
43	Retrodirective-Assisted Secure Wireless Key Establishment. IEEE Transactions on Communications, 2017, 65, 320-334.	4.9	16
44	Security Analysis of a Novel Artificial Randomness Approach for Fast Key Generation. , 2017, , .		21
45	Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview. Entropy, 2017, 19, 420.	1.1	58
46	Secure Wireless Key Establishment Using Retrodirective Array. , 2016, , .		1
47	Efficient Key Generation by Exploiting Randomness From Channel Responses of Individual OFDM Subcarriers. IEEE Transactions on Communications, 2016, 64, 2578-2588.	4.9	87
48	Green twoâ€ŧiered wireless multimedia sensor systems: an energy, bandwidth, and quality optimisation framework. IET Communications, 2016, 10, 2543-2550.	1.5	9
49	Impact of primary networks on the performance of energy harvesting cognitive radio networks. IET Communications, 2016, 10, 2559-2566.	1.5	21
50	Experimental Study on Key Generation for Physical Layer Security in Wireless Communications. IEEE Access, 2016, 4, 4464-4477.	2.6	64
50 51	Experimental Study on Key Generation for Physical Layer Security in Wireless Communications. IEEE Access, 2016, 4, 4464-4477. Experimental study on channel reciprocity in wireless key generation. , 2016, , .	2.6	64 21
50 51 52	Experimental Study on Key Generation for Physical Layer Security in Wireless Communications. IEEE Access, 2016, 4, 4464-4477. Experimental study on channel reciprocity in wireless key generation. , 2016, , . Key Generation From Wireless Channels: A Review. IEEE Access, 2016, 4, 614-626.	2.6 2.6	64 21 306
50 51 52 53	Experimental Study on Key Generation for Physical Layer Security in Wireless Communications. IEEE Access, 2016, 4, 4464-4477. Experimental study on channel reciprocity in wireless key generation., 2016,,. Key Generation From Wireless Channels: A Review. IEEE Access, 2016, 4, 614-626. An effective key generation system using improved channel reciprocity., 2015,,.	2.6 2.6	64 21 306 20

#	Article	IF	CITATIONS
55	Frequency diverse array OFDM transmitter for secure wireless communication. Electronics Letters, 2015, 51, 1374-1376.	0.5	46

 $\,$ Secure key generation from OFDM subcarriers' channel responses. , 2014, , .