Junqing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072404/publications.pdf

Version: 2024-02-01

56	2,287	24 h-index	40
papers	citations		g-index
56	56	56	1080 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Key Generation From Wireless Channels: A Review. IEEE Access, 2016, 4, 614-626.	2.6	306
2	Design of a Hybrid RF Fingerprint Extraction and Device Classification Scheme. IEEE Internet of Things Journal, 2019, 6, 349-360.	5.5	167
3	Deep Learning Based RF Fingerprint Identification Using Differential Constellation Trace Figure. IEEE Transactions on Vehicular Technology, 2020, 69, 1091-1095.	3.9	156
4	Physical Layer Security for the Internet of Things: Authentication and Key Generation. IEEE Wireless Communications, 2019, 26, 92-98.	6.6	115
5	Towards Scalable and Channel-Robust Radio Frequency Fingerprint Identification for LoRa. IEEE Transactions on Information Forensics and Security, 2022, 17, 774-787.	4.5	90
6	Efficient Key Generation by Exploiting Randomness From Channel Responses of Individual OFDM Subcarriers. IEEE Transactions on Communications, 2016, 64, 2578-2588.	4.9	87
7	High-Agreement Uncorrelated Secret Key Generation Based on Principal Component Analysis Preprocessing. IEEE Transactions on Communications, 2018, 66, 3022-3034.	4.9	85
8	Radio Frequency Fingerprint Identification for LoRa Using Deep Learning. IEEE Journal on Selected Areas in Communications, 2021, 39, 2604-2616.	9.7	79
9	A New Frontier for IoT Security Emerging From Three Decades of Key Generation Relying on Wireless Channels. IEEE Access, 2020, 8, 138406-138446.	2.6	73
10	Design of an OFDM Physical Layer Encryption Scheme. IEEE Transactions on Vehicular Technology, 2017, 66, 2114-2127.	3.9	69
11	Experimental Study on Key Generation for Physical Layer Security in Wireless Communications. IEEE Access, 2016, 4, 4464-4477.	2.6	64
12	Radio Frequency Fingerprint Identification for Narrowband Systems, Modelling and Classification. IEEE Transactions on Information Forensics and Security, 2021, 16, 3974-3987.	4.5	62
13	On the Key Generation From Correlated Wireless Channels. IEEE Communications Letters, 2017, 21, 961-964.	2.5	59
14	Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview. Entropy, 2017, 19, 420.	1.1	58
15	Physical Layer Key Generation in 5G and Beyond Wireless Communications: Challenges and Opportunities. Entropy, 2019, 21, 497.	1.1	58
16	On Radio Frequency Fingerprint Identification for DSSS Systems in Low SNR Scenarios. IEEE Communications Letters, 2018, 22, 2326-2329.	2.5	55
17	Channel-Envelope Differencing Eliminates Secret Key Correlation: LoRa-Based Key Generation in Low Power Wide Area Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 12462-12466.	3.9	52
18	Frequency diverse array OFDM transmitter for secure wireless communication. Electronics Letters, 2015, 51, 1374-1376.	0.5	46

#	Article	IF	CITATIONS
19	Radio Frequency Fingerprint Identification for LoRa Using Spectrogram and CNN., 2021,,.		45
20	An Investigation of Using Loop-Back Mechanism for Channel Reciprocity Enhancement in Secret Key Generation. IEEE Transactions on Mobile Computing, 2019, 18, 507-519.	3.9	37
21	Encrypting Wireless Communications on the Fly Using One-Time Pad and Key Generation. IEEE Internet of Things Journal, 2021, 8, 357-369.	5.5	37
22	Experimental Investigation on Wireless Key Generation for Low-Power Wide-Area Networks. IEEE Internet of Things Journal, 2020, 7, 1745-1755.	5.5	32
23	Constructing Reciprocal Channel Coefficients for Secret Key Generation in FDD Systems. IEEE Communications Letters, 2018, 22, 2487-2490.	2.5	30
24	Sum Secret Key Rate Maximization for TDD Multi-User Massive MIMO Wireless Networks. IEEE Transactions on Information Forensics and Security, 2021, 16, 968-982.	4.5	27
25	Deep-Learning-Based Physical-Layer Secret Key Generation for FDD Systems. IEEE Internet of Things Journal, 2022, 9, 6081-6094.	5.5	27
26	Secure Cooperative Single Carrier Systems Under Unreliable Backhaul and Dense Networks Impact. IEEE Access, 2017, 5, 18310-18324.	2.6	26
27	Time-Modulated OFDM Directional Modulation Transmitters. IEEE Transactions on Vehicular Technology, 2019, 68, 8249-8253.	3.9	24
28	Design of a Robust Radio-Frequency Fingerprint Identification Scheme for Multimode LFM Radar. IEEE Internet of Things Journal, 2020, 7, 10581-10593.	5.5	23
29	LTE Device Identification Based on RF Fingerprint with Multi-Channel Convolutional Neural Network. , 2021, , .		22
30	Impact of primary networks on the performance of energy harvesting cognitive radio networks. IET Communications, 2016, 10, 2559-2566.	1.5	21
31	Experimental study on channel reciprocity in wireless key generation. , 2016, , .		21
32	Security Analysis of a Novel Artificial Randomness Approach for Fast Key Generation., 2017,,.		21
33	Secure key generation from OFDM subcarriers' channel responses. , 2014, , .		20
34	An effective key generation system using improved channel reciprocity. , 2015, , .		20
35	Key Generation for Internet of Things. ACM Computing Surveys, 2022, 54, 1-37.	16.1	18
36	Reconfigurable Intelligent Surface Assisted Secret Key Generation in Quasi-Static Environments. IEEE Communications Letters, 2022, 26, 244-248.	2.5	18

#	Article	IF	Citations
37	Retrodirective-Assisted Secure Wireless Key Establishment. IEEE Transactions on Communications, 2017, 65, 320-334.	4.9	16
38	Design of an Efficient OFDMA-Based Multi-User Key Generation Protocol. IEEE Transactions on Vehicular Technology, 2019, 68, 8842-8852.	3.9	15
39	NISA: Node Identification and Spoofing Attack Detection Based on Clock Features and Radio Information for Wireless Sensor Networks. IEEE Transactions on Communications, 2021, 69, 4691-4703.	4.9	13
40	Verification of Key Generation from Individual OFDM Subcarrier's Channel Response., 2015,,.		11
41	Securing M2M Transmissions Using Nonreconciled Secret Keys Generated from Wireless Channels. , 2018, , .		11
42	LoRaWAN Physical Layer-Based Attacks and Countermeasures, A Review. Sensors, 2022, 22, 3127.	2.1	10
43	Fast and Secure Key Generation with Channel Obfuscation in Slowly Varying Environments. , 2022, , .		10
44	Green twoâ€tiered wireless multimedia sensor systems: an energy, bandwidth, and quality optimisation framework. IET Communications, 2016, 10, 2543-2550.	1.5	9
45	Security Optimization of Exposure Region-Based Beamforming With a Uniform Circular Array. IEEE Transactions on Communications, 2018, 66, 2630-2641.	4.9	9
46	Radio Frequency Fingerprint Identification for Security in Low-Cost IoT Devices., 2021,,.		8
47	Beam-Domain Secret Key Generation for Multi-User Massive MIMO Networks. , 2020, , .		5
48	H2K: A Heartbeat-Based Key Generation Framework for ECG and PPG Signals. IEEE Transactions on Mobile Computing, 2023, 22, 923-934.	3.9	5
49	Machine Learning Based Attack Against Artificial Noise-Aided Secure Communication. , 2019, , .		3
50	Key Generation Based on Large Scale Fading. IEEE Transactions on Vehicular Technology, 2019, 68, 8222-8226.	3.9	3
51	Power Amplifier enabled RF Fingerprint Identification. , 2021, , .		3
52	A channel perceiving attack and the countermeasure on long-range IoT physical layer key generation. Computer Communications, 2022, 191, 108-118.	3.1	3
53	Physical-Layer-Based Secure Communications for Static and Low-Latency Industrial Internet of Things. IEEE Internet of Things Journal, 2022, 9, 18392-18405.	5. 5	2
54	Secure Wireless Key Establishment Using Retrodirective Array. , 2016, , .		1

#	Article	IF	CITATIONS
55	Phase error effects on distributed transmit beamforming for wireless communications. , 2017, , .		o
56	Design of an Energy-Efficient Multidimensional Secure Constellation for 5G Communications. , 2019, , .		0