List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene. ACS Nano, 2015, 9, 2548-2555.	7.3	248
2	Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene. Nanoscale, 2015, 7, 13646-13655.	2.8	153
3	Synthesis and Applications of Graphene Oxide. Materials, 2022, 15, 920.	1.3	121
4	Towards graphene bromide: bromination of graphite oxide. Nanoscale, 2014, 6, 6065-6074.	2.8	109
5	Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Construction and Building Materials, 2018, 180, 1-11.	3.2	95
6	Phase equilibria in Ca–Co–O system. Journal of Solid State Chemistry, 2012, 194, 199-205.	1.4	91
7	Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties. Applied Materials Today, 2016, 4, 45-53.	2.3	87
8	Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. Journal of Materials Chemistry A, 2017, 5, 2739-2748.	5.2	87
9	Eco-friendly concrete with scrap-tyre-rubber-based aggregate – Properties and thermal stability. Construction and Building Materials, 2019, 225, 709-722.	3.2	81
10	Uranium- and Thorium-Doped Graphene for Efficient Oxygen and Hydrogen Peroxide Reduction. ACS Nano, 2014, 8, 7106-7114.	7.3	73
11	Water-soluble highly fluorinated graphite oxide. RSC Advances, 2014, 4, 1378-1387.	1.7	69
12	Alternating Misfit Layered Transition/Alkaline Earth Metal Chalcogenide Ca ₃ Co ₄ O ₉ as a New Class of Chalcogenide Materials for Hydrogen Evolution. Chemistry of Materials, 2014, 26, 4130-4136.	3.2	68
13	Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Management, 2018, 80, 89-100.	3.7	63
14	Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon, 2014, 77, 508-517.	5.4	61
15	Complex Characterization and Behavior of Waste Fired Brick Powder-Portland Cement System. Materials, 2019, 12, 1650.	1.3	57
16	Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Advances, 2016, 6, 66884-66892.	1.7	56
17	Graphene Oxide Sorption Capacity toward Elements over the Whole Periodic Table: A Comparative Study. Journal of Physical Chemistry C, 2016, 120, 24203-24212.	1.5	56
18	Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS ₂ and WS ₂ Nanoscale, 2016, 8, 1960-1967	2.8	56

#	Article	IF	CITATIONS
19	Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Construction and Building Materials, 2018, 160, 106-116.	3.2	55
20	Towards graphene iodide: iodination of graphite oxide. Nanoscale, 2015, 7, 261-270.	2.8	54
21	Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al ₂ O ₃ –graphene. RSC Advances, 2014, 4, 7418-7424.	1.7	50
22	Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature. Nanoscale, 2014, 6, 2153-2160.	2.8	49
23	CoO and Co3O4 nanoparticles with a tunable particle size. Ceramics International, 2014, 40, 12591-12595.	2.3	47
24	Biomass ash-based mineral admixture prepared from municipal sewage sludge and its application in cement composites. Clean Technologies and Environmental Policy, 2018, 20, 159-171.	2.1	47
25	Insight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key. ACS Nano, 2015, 9, 5478-5485.	7.3	46
26	A New Member of the Graphene Family: Graphene Acid. Chemistry - A European Journal, 2016, 22, 17416-17424.	1.7	44
27	Synthesis of MnO, Mn2O3 and Mn3O4 nanocrystal clusters by thermal decomposition of manganese glycerolate. Ceramics International, 2015, 41, 595-601.	2.3	43
28	Oxygenâ€Free Highly Conductive Graphene Papers. Advanced Functional Materials, 2014, 24, 4878-4885.	7.8	42
29	Carbon Dioxide Uptake by MOC-Based Materials. Applied Sciences (Switzerland), 2020, 10, 2254.	1.3	40
30	Synthesis, Structure, and Thermal Stability of Magnesium Oxychloride 5Mg(OH)2â^™MgCl2â^™8H2O. Applied Sciences (Switzerland), 2020, 10, 1683.	1.3	40
31	Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale, 2014, 6, 13082-13089.	2.8	38
32	Synthesis and Properties of Nanosized Stoichiometric Cobalt Ferrite Spinel. Materials, 2018, 11, 1241.	1.3	38
33	Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. New Journal of Chemistry, 2014, 38, 5700-5705.	1.4	37
34	Highly selective removal of Ga 3+ ions from Al 3+ /Ga 3+ mixtures using graphite oxide. Carbon, 2015, 89, 121-129.	5.4	36
35	Ternary Blended Binder for Production of a Novel Type of Lightweight Repair Mortar. Materials, 2019, 12, 996.	1.3	34
36	Experimental Analysis of MOC Composite with a Waste-Expanded Polypropylene-Based Aggregate. Materials, 2018, 11, 931.	1.3	33

#	Article	IF	CITATIONS
37	Nanosized graphane (C ₁ H _{1.14}) _n by hydrogenation of carbon nanofibers by Birch reduction method. RSC Advances, 2016, 6, 6475-6485.	1.7	30
38	STUDY ON POZZOLANA ACTIVITY OF WHEAT STRAW ASH AS POTENTIAL ADMIXTURE FOR BLENDED CEMENTS. Ceramics - Silikaty, 2017, , 327-339.	0.2	30
39	Fast Synthesis of Highly Oxidized Graphene Oxide. ChemistrySelect, 2017, 2, 9000-9006.	0.7	29
40	Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2â^™MgCl2â^™8H2O. Materials, 2020, 13, 767.	1.3	28
41	High-performance magnesium oxychloride composites with silica sand and diatomite. Journal of Materials Research and Technology, 2021, 11, 957-969.	2.6	27
42	Mesomeric Effects of Graphene Modified with Diazonium Salts: Substituent Type and Position Influence its Properties. Chemistry - A European Journal, 2015, 21, 17728-17738.	1.7	26
43	Phase diagram of the Sr–Co–O system. Journal of the European Ceramic Society, 2015, 35, 935-940.	2.8	26
44	Simple Synthesis of Fluorinated Graphene: Thermal Exfoliation of Fluorographite. Chemistry - A European Journal, 2016, 22, 17696-17703.	1.7	26
45	Thermodynamic properties of nanostructured ZnO. Applied Materials Today, 2018, 10, 1-11.	2.3	26
46	Structure, non-stoichiometry and thermodynamic properties of Bi1.85Sr2Co1.85O7.7â^' ceramics. Thermochimica Acta, 2014, 582, 40-45.	1.2	25
47	High temperature superconducting materials as bi-functional catalysts for hydrogen evolution and oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 8346-8352.	5.2	25
48	Separation of thorium ions from wolframite and scandium concentrates using graphene oxide. Physical Chemistry Chemical Physics, 2015, 17, 25272-25277.	1.3	25
49	Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?. Angewandte Chemie - International Edition, 2016, 55, 11965-11969.	7.2	25
50	Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide. Chemistry - A European Journal, 2017, 23, 6432-6440.	1.7	24
51	Towards novel building materials: High-strength nanocomposites based on graphene, graphite oxide and magnesium oxychloride. Applied Materials Today, 2020, 20, 100766.	2.3	24
52	Phase diagram of the pseudobinary system Bi–Co–O. Journal of the European Ceramic Society, 2013, 33, 2699-2704.	2.8	23
53	Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?. Angewandte Chemie, 2016, 128, 12144-12148.	1.6	23
54	Size and Shape-Dependent Solubility of CuO Nanostructures. Materials, 2019, 12, 3355.	1.3	22

#	Article	IF	CITATIONS
55	Selective Bromination of Graphene Oxide by the Hunsdiecker Reaction. Chemistry - A European Journal, 2017, 23, 10473-10479.	1.7	21
56	Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry. FlatChem, 2021, 29, 100284.	2.8	21
57	Simple synthesis of Cr2O3 nanoparticles with a tunable particle size. Ceramics International, 2015, 41, 4644-4650.	2.3	20
58	Synthesis and properties of YBa2Cu3O7-δ– Y2Ba4CuWO10.8 superconducting composites. Journal of the European Ceramic Society, 2018, 38, 2541-2546.	2.8	20
59	Influence of Waste Plastic Aggregate and Water-Repellent Additive on the Properties of Lightweight Magnesium Oxychloride Cement Composite. Applied Sciences (Switzerland), 2019, 9, 5463.	1.3	20
60	Synthesis, magnetic and transport properties of oxygen-free CrN ceramics. Journal of the European Ceramic Society, 2014, 34, 4131-4136.	2.8	19
61	Definitive Insight into the Graphite Oxide Reduction Mechanism by Deuterium Labeling. ChemPlusChem, 2015, 80, 1399-1407.	1.3	19
62	Thermodynamic properties of stoichiometric lithium cobaltite LiCoO2. Thermochimica Acta, 2016, 634, 26-30.	1.2	19
63	Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars. Materials, 2019, 12, 2227.	1.3	19
64	Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Waste. Processes, 2020, 8, 829.	1.3	19
65	Porous alumina and zirconia ceramics with tailored thermal conductivity. Journal of Physics: Conference Series, 2012, 395, 012022.	0.3	18
66	Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate. Materials Chemistry and Physics, 2016, 180, 272-278.	2.0	18
67	Magnetic and magnetotransport properties of misfit cobaltate Ca3Co3.93O9+δ. Journal of Applied Physics, 2012, 111, .	1.1	17
68	MOC Doped with Graphene Nanoplatelets: The Influence of the Mixture Preparation Technology on Its Properties. Materials, 2021, 14, 1450.	1.3	17
69	Heat capacity, enthalpy and entropy of Sr14Co11O33 and Sr6Co5O15. Thermochimica Acta, 2014, 575, 167-172.	1.2	16
70	Synthesis, structure, thermal, transport and magnetic properties of VN ceramics. Ceramics International, 2016, 42, 18779-18784.	2.3	16
71	Production of pure amorphous silica from wheat straw ash. Green Materials, 2018, 6, 1-5.	1.1	16
72	Magnesium Oxychloride Cement Composites with Silica Filler and Coal Fly Ash Admixture. Materials, 2020, 13, 2537.	1.3	16

#	Article	IF	CITATIONS
73	Definitive proof of graphene hydrogenation by Clemmensen reduction: use of deuterium labeling. Nanoscale, 2015, 7, 10535-10543.	2.8	15
74	Cost-effective isothermal top-seeded melt-growth of single-domain YBCO superconducting ceramics. Solid State Sciences, 2019, 88, 74-80.	1.5	15
75	Use of deuterium labelling—evidence of graphene hydrogenation by reduction of graphite oxide using aluminium in sodium hydroxide. RSC Advances, 2015, 5, 18733-18739.	1.7	14
76	Preparation of polymeric coatings by ionized jet deposition method. Chemical Papers, 2018, 72, 1735-1739.	1.0	14
77	Microscale and nanoscale pinning centres in single-domain REBCO superconductors. Journal of Materials Chemistry C, 2019, 7, 13010-13019.	2.7	14
78	Simple synthesis of free surface nanostructured spinel NiFe2O4 with a tunable particle size. Journal of Alloys and Compounds, 2017, 723, 58-63.	2.8	13
79	Magnesium Oxychloride Cement Composites Lightened with Granulated Scrap Tires and Expanded Glass. Materials, 2020, 13, 4828.	1.3	13
80	Magnesium Oxychloride Cement Composites with MWCNT for the Construction Applications. Materials, 2021, 14, 484.	1.3	13
81	LIGHTWEIGHT CONCRETE MADE WITH WASTE EXPANDED POLYPROPYLENE-BASED AGGREGATE AND SYNTHETIC COAGULATED AMORPHOUS SILICA. Ceramics - Silikaty, 2018, , 221-232.	0.2	13
82	Oxygen non-stoichiometry and thermodynamic properties of Bi2Sr2CoO6+δ ceramics. Journal of the European Ceramic Society, 2014, 34, 1219-1225.	2.8	12
83	Infrared luminescence in Er3+:Yb3Al5O12 bulk ceramics prepared by sol–gel method. Journal of the European Ceramic Society, 2014, 34, 3779-3782.	2.8	12
84	Preparation of manganese oxide nanoparticles by thermal decomposition of nanostructured manganese carbonate. Chemical Papers, 2017, 71, 1031-1035.	1.0	12
85	Nano-functionalization of carbon-bonded alumina using graphene oxide and MWCNTs. Journal of the European Ceramic Society, 2018, 38, 4732-4738.	2.8	12
86	Nanosized Pinning Centers in the Rare Earth-Barium-Copper-Oxide Thin-Film Superconductors. Nanomaterials, 2020, 10, 1429.	1.9	12
87	Electrochemical properties of layered SnO and PbO for energy applications. RSC Advances, 2015, 5, 101949-101958.	1.7	11
88	Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities. Chemistry - A European Journal, 2016, 22, 8627-8634.	1.7	11
89	Reducing emission of carcinogenic by-products in the production of thermally reduced graphene oxide. Green Chemistry, 2016, 18, 6618-6629.	4.6	11
90	Unique wettability phenomenon of carbon-bonded alumina with advanced nanocoating. Applied Materials Today, 2018, 13, 24-31.	2.3	11

#	Article	IF	CITATIONS
91	Hydrotalcites in Construction Materials. Applied Sciences (Switzerland), 2020, 10, 7989.	1.3	11
92	Misfit‣ayered Bi _{1.85} Sr ₂ Co _{1.85} O _{7.7â^'<i>δ</i>} for the Hydrogen Evolution Reaction: Beyond van der Waals Heterostructures. ChemPhysChem, 2015, 16, 769-774.	1.0	10
93	Phase equilibria in the Zn–Mn–O system. Journal of the European Ceramic Society, 2015, 35, 555-560.	2.8	10
94	Facile preparation of nanosized yttrium oxide by the thermal decomposition of amorphous Schiff base yttrium complex precursor. Journal of Organometallic Chemistry, 2017, 830, 146-149.	0.8	10
95	Synthesis, Composition, and Properties of Partially Oxidized Graphite Oxides. Materials, 2019, 12, 2367.	1.3	10
96	The Effect of Nanosizing on the Oxidation of Partially Oxidized Copper Nanoparticles. Materials, 2020, 13, 2878.	1.3	10
97	Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructions. FlatChem, 2021, 26, 100234.	2.8	10
98	Structure, oxygen non-stoichiometry and thermal properties of (Bi0.4Sr0.6)Sr2CoO5‑'δ. Thermochimica Acta, 2015, 600, 89-94.	1.2	9
99	Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning. Journal of the European Ceramic Society, 2018, 38, 4109-4117.	2.8	9
100	Filter Coatings Based on Combination of Nanomaterials for Steel Melt Filtration. Advanced Engineering Materials, 2020, 22, 1900457.	1.6	9
101	Artificially perforated singleâ€grain YBCO bulks: Dependence of superconducting properties on the bulk thickness. Journal of the American Ceramic Society, 2020, 103, 5169-5177.	1.9	9
102	LaMgAl11019 synthesis using non-hydrolytic sol-gel methods. Ceramics International, 2019, 45, 11233-11240.	2.3	8
103	The Impact of Graphene and Diatomite Admixtures on the Performance and Properties of High-Performance Magnesium Oxychloride Cement Composites. Materials, 2020, 13, 5708.	1.3	8
104	Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly Ash. Materials, 2021, 14, 1103.	1.3	8
105	Zeolite Lightweight Repair Renders: Effect of Binder Type on Properties and Salt Crystallization Resistance. Materials, 2021, 14, 3760.	1.3	8
106	Introduction of sulfur to graphene oxide by Friedel-Crafts reaction. FlatChem, 2017, 6, 28-36.	2.8	7
107	Lightweight Vapor-Permeable Plasters for Building Repair Detailed Experimental Analysis of the Functional Properties. Materials, 2021, 14, 2613.	1.3	7
108	Phase equilibria in the Bi-Sr-Co-O system: Towards the material tailoring of thermoelectric cobaltites. Journal of the European Ceramic Society, 2015, 35, 3005-3012.	2.8	6

#	Article	IF	CITATIONS
109	Sol–gel-derived planar waveguides of Er3+:Yb3Al5O12 prepared by a polyvinylpyrrolidone-based method. Journal of Sol-Gel Science and Technology, 2016, 80, 531-537.	1.1	6
110	Facile synthesis of magnetic Co nanofoam by lowâ€ŧemperature thermal decomposition of Co glycerolate. Micro and Nano Letters, 2017, 12, 278-280.	0.6	6
111	Hydrogenation of Fluorographite and Fluorographene: An Easy Way to Produce Highly Hydrogenated Graphene. Chemistry - A European Journal, 2018, 24, 8350-8360.	1.7	6
112	Synthesis and properties of phosphorus and sulfur co-doped graphene. New Journal of Chemistry, 2018, 42, 16093-16102.	1.4	6
113	WOOD CHIPS ASH PROCESSING AND ITS UTILIZATION IN MAGNESIUM PHOSPHATE CEMENT COMPOSITES. Ceramics - Silikaty, 2019, , 267-276.	0.2	6
114	Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditives. Journal of Building Engineering, 2022, 50, 104122.	1.6	6
115	Thermodynamic properties of tubular cobaltite Bi3.7Sr11.4Co8O29â^'Î′. Thermochimica Acta, 2015, 605, 22-27.	1.2	5
116	Heat capacity, entropy, oxygen non-stoichiometry and magnetic properties of cobalt sillenite Bi24Co2O39â~'. Thermochimica Acta, 2015, 619, 26-31.	1.2	5
117	Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. AIP Conference Proceedings, 2017, , .	0.3	5
118	MOC-Diatomite Composites Filled with Multi-Walled Carbon Nanotubes. Materials, 2021, 14, 4576.	1.3	5
119	PREPARATION OF PUZZOLANA ACTIVE TWO COMPONENT COMPOSITE FOR LATENT HEAT STORAGE. Ceramics - Silikaty, 2016, , 291-298.	0.2	5
120	Tuning the top-seeded melt growth of REBCO single-domain superconducting bulks by a pyramid-like buffer stack. Ceramics International, 2022, 48, 5377-5385.	2.3	5
121	Rapid thermal synthesis of GaN nanocrystals and nanodisks. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	4
122	Graphene: Oxygen-Free Highly Conductive Graphene Papers (Adv. Funct. Mater. 31/2014). Advanced Functional Materials, 2014, 24, 4877-4877.	7.8	4
123	Thermodynamic properties of misfit cobaltite [Bi2-xCa2O4][CoO2]1.7. Thermochimica Acta, 2017, 656, 129-134.	1.2	4
124	Phase equilibria modelling in Bi–Sr–Co–O system—Towards crystal growth and melt-assisted material processing. Journal of the European Ceramic Society, 2018, 38, 131-135.	2.8	4
125	Electro-optic glass for light modulators. Journal of Non-Crystalline Solids, 2019, 518, 51-56.	1.5	4
126	Texture of the Freshwater Shells from the Unionidae Family Collected in the Czech Republic Investigated by X-ray and Neutron Diffraction. Crystals, 2021, 11, 1483.	1.0	4

#	Article	IF	CITATIONS
127	Assessment of wood chips ash as efficient admixture in foamed glass-MOC composites. Journal of Materials Research and Technology, 2022, 19, 2287-2300.	2.6	4
128	Slumping of Si wafers at high temperature. Proceedings of SPIE, 2013, , .	0.8	3
129	Thermodynamic modeling of copper nanoparticles oxidation. AIP Conference Proceedings, 2019, , .	0.3	3
130	Kinetics of formation and thermal stability of Mg2(OH)3Cl·4H2O. AlP Conference Proceedings, 2019, , .	0.3	3
131	Phase-stable segmentation of BSCCO high-temperature superconductor into micro-, meso-, and nano-size fractions. Journal of Materials Research and Technology, 2020, 9, 12071-12079.	2.6	3
132	Synthesis and Characterization of the Properties of Ceria Nanoparticles with Tunable Particle Size for the Decomposition of Chlorinated Pesticides. Applied Sciences (Switzerland), 2020, 10, 5224.	1.3	3
133	Magnesium Oxybromides MOB-318 and MOB-518: Brominated Analogues of Magnesium Oxychlorides. Applied Sciences (Switzerland), 2020, 10, 4032.	1.3	3
134	Carbon-Bonded Alumina Filters Coated by Graphene Oxide for Water Treatment. Materials, 2020, 13, 2006.	1.3	3
135	Effect of Target Density on the Surface Morphology of Y-Ba-Cu-O Thin Films Prepared by Ionized Jet Deposition. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	3
136	THE EFFECT OF THE SODIUM SULPHATE SOLUTION EXPOSURE ON PROPERTIES AND MECHANICAL RESISTANCE OF DIFFERENT KINDS OF RENDERS. Ceramics - Silikaty, 2018, , 311-324.	0.2	3
137	Graphene-Reinforced Carbon-Bonded Coarse-Grained Refractories. Materials, 2022, 15, 186.	1.3	3
138	Synthesis of InN nanoparticles by rapid thermal ammonolysis. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	2
139	Chemical and thermal analysis of biomass ash from wooden chips and wheat straw combustion. AIP Conference Proceedings, 2017, , .	0.3	2
140	Synthesis of YBCO - Y-2411-M (M=Bi, Mo, Nb, Ta, Ti and Zr) superconducting composites by TSMG. AIP Conference Proceedings, 2018, , .	0.3	2
141	Fast synthesis of highly-oxidized graphene oxide by two-step oxidation process. AIP Conference Proceedings, 2019, , .	0.3	2
142	Flame aerosol transport method for assembling CeO2–SiO2 nanocomposites. Ceramics International, 2020, 46, 5495-5499.	2.3	2
143	The effective synthesis of large volumes of the ultrafine BaZrO3 nanoparticles. Materials Chemistry and Physics, 2021, 259, 124047.	2.0	2
144	Synthesis of nanosized LaFeAl11O19 hexaaluminate by mixed metal glycerolate method. Ceramics International, 2021, 47, 29653-29659.	2.3	2

#	Article	IF	CITATIONS
145	Thermal decomposition of lactates: Towards ultrafine nanostrucured oxides. AIP Conference Proceedings, 2018, , .	0.3	1
146	Effect of ZnO nanosizing on its solubility in aqueous media. Micro and Nano Letters, 2018, 13, 1585-1589.	0.6	1
147	Petrophysical record of evolution of weakly deformed low-porosity limestone revealed by small-angle neutron scattering, neutron diffraction and AMS study. Geophysical Journal International, 2018, 215, 895-908.	1.0	1
148	Chemical composition, thermal analysis and pozzolanic activity of biomass ash from Miscanthus. AIP Conference Proceedings, 2018, , .	0.3	1
149	Heat capacity and thermal stability of Y2BaCuO5. AIP Conference Proceedings, 2019, , .	0.3	1
150	Thermodynamic Properties of Stoichiometric Non-Superconducting Phase Y2BaCuO5. Materials, 2019, 12, 3163.	1.3	1
151	Transport Coefficients in Y-Ba-Cu-O System for Ionized Jet Deposition Method. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-3.	1.1	1
152	Influence of RE-Based Liquid Source (RE = Sm, Gd, Dy, Y, Yb) on EuBCO/Ag Superconducting Bulks. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	1
153	The influence of graphene specific surface on material properties of MOC-based composites for construction use. Journal of Building Engineering, 2021, 43, 103193.	1.6	1
154	MOC Cement-Based Composites with Silica Filler and Wood Chips Ash Admixture. IOP Conference Series: Materials Science and Engineering, 0, 960, 022081.	0.3	1
155	Influence of Graphite Oxide Addition on the Properties of Magnesium Oxychloride Cement Composites. IOP Conference Series: Materials Science and Engineering, 0, 960, 022080.	0.3	1
156	Variability in levitation properties of YBCO bulks grown in one batch. AIP Conference Proceedings, 2020, , .	0.3	1
157	Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Use. Materials, 2022, 15, 604.	1.3	1
158	Fine fluorite nanoparticles synthesized from biomass ash. Journal of Fluorine Chemistry, 2018, 216, 112-117.	0.9	0
159	Heat capacity and thermal stability of YBa2Cu3O7. AIP Conference Proceedings, 2018, , .	0.3	0
160	Fast synthesis of graphite oxide via modified chlorate route. AIP Conference Proceedings, 2018, , .	0.3	0
161	Mixed Yttrium–Ytterbium–Erbium Schiff Base Complex as a Model Precursor for Mixed Nanosized Rare Earths Oxides. Journal of Cluster Science, 2018, 29, 549-553.	1.7	0
162	Kinetic sorption in the transport of species in a cement based composite. AIP Conference Proceedings, 2019, , .	0.3	0

#	Article	IF	CITATIONS
163	Synthesis and characterization of ceria nanoparticles. AIP Conference Proceedings, 2019, , .	0.3	0
164	Effect of a varying moisture diffusivity in the transport of gadolinium in a porous material. AIP Conference Proceedings, 2019, , .	0.3	0
165	High-density YBCO targets for sputtering with defect-free microstructure prepared by novel infiltration method. Journal of the European Ceramic Society, 2021, 41, 7077-7084.	2.8	0
166	POZZOLANA ACTIVE WHEAT STRAW ASH AS ADMIXTURE FOR CEMENT-BASED CONSTRUCTION MATERIALS. , 2017, , .		0
167	Synthesis and characterization of magnesium oxybromide Mg2(OH)3Br·4 H2O. AIP Conference Proceedings, 2020, , .	0.3	0
168	Simple synthesis of nanostructured BaZrO3 and its use in superconducting composites. AIP Conference Proceedings, 2020, , .	0.3	0
169	Immobilization of ceria nanoparticles by formation of CeO2/SiO2 composites. AlP Conference Proceedings, 2020, , .	0.3	0
170	Thermal stability and kinetics of formation of Mg3(OH)5Cl·4 H2O. AIP Conference Proceedings, 2020, , .	0.3	0
171	SPS of YBCO precursor for the top-seeded melt growth. AIP Conference Proceedings, 2020, , .	0.3	0
172	Highly-reactive nanoscale MgO precursor for fast synthesis of magnesium oxychlorides. AIP Conference Proceedings, 2022, , .	0.3	0
173	Enhancement of structural and mechanical properties of magnesium oxychloride cement due to graphene addition. AIP Conference Proceedings, 2022, , .	0.3	О