
Jusung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4072051/publications.pdf Version: 2024-02-01

LUSUNC KIM

#	Article	IF	CITATIONS
1	A 0.3-to-1-GHz IoT Transmitter Employing Pseudo-Randomized Phase Switching Modulator and Single-Supply Class-G Harmonic Rejection PA. IEEE Journal of Solid-State Circuits, 2022, 57, 892-905.	5.4	3
2	Time-Multiplexed PWM LED Driver With Grayscale Enhancement Techniques for Signage Display. IEEE Transactions on Industrial Electronics, 2022, 69, 6410-6419.	7.9	8
3	A Wideband Low-Power Balun-LNA with Feedback and Current Reuse Technique. Electronics (Switzerland), 2022, 11, 1372.	3.1	5
4	A Deionized Water-Infilled Dual-Layer Insulator-Applied Brain-Implanted UWB Antenna for Wireless Biotelemetry Applications. IEEE Transactions on Antennas and Propagation, 2022, 70, 6469-6478.	5.1	9
5	Analysis and Design of Inductorless Transimpedance Amplifier Employing Nested Feedforward Noise-Canceling Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 3923-3932.	4.6	5
6	CMOS Fractional-N Frequency Synthesizer for UHF RFID Reader Applications With Transformer-Based ISF Manipulation VCO. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 4083-4087.	3.0	0
7	Design of a Low Noise Amplifier Employing On-chip Notch Filters for Blocker Rejection. , 2021, , .		0
8	Frequency-Locked RF Power Oscillator With 43-dBm Output Power and 58% Efficiency. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 739-746.	3.1	0
9	A Low-Noise and Fast-Settling UHF RFID Receiver With Digitally Controlled Leakage Cancellation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2810-2814.	3.0	3
10	A 27 dB Sidelobe Suppression, 1.12 GHz BW _{â^`10<i>dB</i>} UWB Pulse Generator With Process Compensation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2805-2809.	3.0	3
11	Current-Mode Dielectric Spectroscopy for Liquid Permittivity Measurement. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 647-654.	4.0	1
12	A 20-W Wide Bandwidth GaN HEMT Power Amplifier for VHF/UHF Applications. IEEE Transactions on Industrial Electronics, 2020, 67, 10905-10910.	7.9	11
13	Low Voltage Time-Based Matrix Multiplier-and-Accumulator for Neural Computing System. Electronics (Switzerland), 2020, 9, 2138.	3.1	4
14	An 80 MHz Bandwidth and 26.8 dBm OOB IIP3 Transimpedance Amplifier With Improved Nested Feedforward Compensation and Multi-Order Filtering. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3410-3421.	5.4	10
15	A 5.5-dBm, 31.9% Efficiency 915-MHz Transmitter Employing Frequency Tripler and 207-\$mu\$ W Synthesizer. IEEE Microwave and Wireless Components Letters, 2020, 30, 90-93.	3.2	6
16	Analysis and Design of Harmonic Rejection Low Noise Amplifier with an Embedded Notch Filter. Electronics (Switzerland), 2020, 9, 596.	3.1	3
17	A Ku-Band RF Front-End Employing Broadband Impedance Matching with 3.5 dB NF and 21 dB Conversion Gain in 45-nm CMOS Technology. Electronics (Switzerland), 2020, 9, 539.	3.1	1

2

Jusung Kim

#	Article	IF	CITATIONS
19	A Temperature Compensated RF \$LC\$ Clock Generator With ±50-ppm Frequency Accuracy From â^'40 °C to 80 °C. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 4441-4449.	4.6	9
20	Wide Locking-Range Frequency Multiplier by 1.5 Employing Quadrature Injection-Locked Frequency Tripler With Embedded Notch Filtering. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 4791-4802.	4.6	12
21	A 3–6-GHz Highly Linear I-Channel Receiver With Over +3.0-dBm In-Band P _{1dB} and 200-MHz Baseband Bandwidth Suitable for 5G Wireless and Cognitive Radio Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 3134-3147.	5.4	16
22	A Low-Complexity I/Q Imbalance Calibration Method for Quadrature Modulator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 974-977.	3.1	5
23	A 22.8-to-32.4 GHz Injection-locked Frequency Tripler with Source Degeneration. , 2018, , .		2
24	Ka-band RF Front-End with 5dB NF and 16dB conversion gain in 45nm CMOS technology. , 2018, , .		2
25	Design and realization of low-cost 10 W power amplifier module at 7.9–8.4 GHz. IEICE Electronics Express, 2018, 15, 20180775-20180775.	0.8	1
26	Special Section Proposal Tunable Devices for Modern Communications: Materials, Integration, Modeling, and Applications. IEEE Access, 2018, 6, 42368-42372.	4.2	0
27	Injection-Locked Frequency Divider Topology and Design Techniques for Wide Locking-Range and High-Order Division. IEEE Access, 2017, 5, 4410-4417.	4.2	6
28	The Evolution of Channelization Receiver Architecture: Principles and Design Challenges. IEEE Access, 2017, 5, 25385-25395.	4.2	11
29	Low-Power, Low-Cost CMOS Direct-Conversion Receiver Front-End for Multistandard Applications. IEEE Journal of Solid-State Circuits, 2013, 48, 2090-2103.	5.4	67
30	UHF Receiver Front-End: Implementation and Analog Baseband Design Considerations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2012, 20, 197-210.	3.1	17
31	Wideband Inductorless Balun-LNA Employing Feedback for Low-Power Low-Voltage Applications. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 2833-2842.	4.6	77
32	Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 2340-2351.	4.6	118