
Andrei Girnis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatile, Trace, and Ore Elements in Magmatic Melts and Natural Fluids: Evidence from Mineral-Hosted Inclusions. I. Mean Concentrations of 45 Elements in the Main Geodynamic Settings of the Earth. Geochemistry International, 2022, 60, 325-344.	0.7	4
2	Volatile, Trace, and Ore Elements in Magmatic Melts and Natural Fluids: Evidence from Mineral-Hosted Inclusions. II. Effect of Crystallization Differentiation on the Concentrations of Ore Elements. Geochemistry International, 2022, 60, 537-550.	0.7	0
3	Redox Freezing and Melting during Peridotite Interaction with Carbonated Metasediments and Metabasics: Experiments at 10 GPa. Geochemistry International, 2022, 60, 609-625.	0.7	2
4	Composition and Geochemical Specifics of Magmatic Melts in Kamchatka: Evidence from Melt Inclusions and Quenched Glasses of Rocks. Geochemistry International, 2020, 58, 271-290.	0.7	2
5	Mean Concentrations of Volatile Components and of Major and Trace Elements in Magmatic Melts of the Dominant Geodynamic Settings of the Earth. II. Silicic Melts. Geochemistry International, 2019, 57, 407-423.	0.7	3
6	Ferropericlase crystallization under upper mantle conditions. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	10
7	Subduction factory in an ampoule: Experiments on sediment–peridotite interaction under temperature gradient conditions. Geochimica Et Cosmochimica Acta, 2018, 223, 319-349.	3.9	20
8	Mean concentrations of volatile components, major and trace elements in magmatic melts in major geodynamic environments on Earth. I. Mafic melts. Geochemistry International, 2017, 55, 629-653.	0.7	9
9	Concentration of ore elements in magmatic melts and natural fluids as deduced from data on inclusions in minerals. Geology of Ore Deposits, 2016, 58, 327-343.	0.7	7
10	Volatile and trace elements in alkaline and subalkaline melts of ocean islands: Evidence from inclusions in minerals and quenched glasses of rocks. Geochemistry International, 2016, 54, 543-558.	0.7	2
11	Reduced sediment melting at 7.5–12ÂGPa: phase relations, geochemical signals and diamond nucleation. Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	34
12	Comparison of major, volatile, and trace element contents in the melts of mid-ocean ridges on the basis of data on inclusions in minerals and quenched glasses of rocks. Geochemistry International, 2014, 52, 347-364.	0.7	11
13	Carbonated sediment–peridotite interaction and melting at 7.5–12GPa. Lithos, 2014, 200-201, 368-385.	1.4	36
14	Silicate–carbonate liquid immiscibility and crystallization of carbonate and K-rich basaltic magma: insights from melt and fluid inclusions. Mineralogical Magazine, 2012, 76, 411-439.	1.4	10
15	Melt inclusions in olivine from the boninites of New Caledonia: Postentrapment melt modification and estimation of primary magma compositions. Petrology, 2012, 20, 529-544.	0.9	7
16	Melting of K-rich carbonated peridotite at 6–10GPa and the stability of K-phases in the upper mantle. Chemical Geology, 2011, 281, 333-342.	3.3	81
17	Average composition of basic magmas and mantle sources of island arcs and active continental margins estimated from the data on melt inclusions and quenched glasses of rocks. Petrology, 2010, 18, 1-26.	0.9	25
18	Fluoride and chloride melts included in phenocrysts of agpaitic acid volcanic rocks from Pantelleria Island. Doklady Earth Sciences, 2010, 433, 978-981.	0.7	13

Andrei Girnis

#	Article	IF	CITATIONS
19	Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks. Geochemistry International, 2010, 48, 1185-1207.	0.7	40
20	Influence of water and fluorine on melting of carbonated peridotite at 6 and 10ÂGPa. Lithos, 2009, 112, 249-259.	1.4	85
21	Mechanisms of formation of barium-rich phlogopite and strontium-rich apatite during the final stages of alkaline magma evolution. Geochemistry International, 2009, 47, 578-591.	0.7	17
22	Peralkaline silicic melts of island arcs, active continental margins, and intraplate continental settings: Evidence from the investigation of melt inclusions in minerals and quenched glasses of rocks. Petrology, 2009, 17, 410-428.	0.9	8
23	Canonical ratios of trace element in basic magmas of various geodynamic settings: Estimation from compositions of melt inclusions and rock glasses. Doklady Earth Sciences, 2009, 426, 611-614.	0.7	8
24	Origin of carbonatite magma during the evolution of ultrapotassic basite magma. Petrology, 2008, 16, 376-394.	0.9	9
25	Experimental Melting of Carbonated Peridotite at 6-10 GPa. Journal of Petrology, 2007, 49, 797-821.	2.8	247
26	Geobarometry for Peridotites: Experiments in Simple and Natural Systems from 6 to 10 GPa. Journal of Petrology, 2007, 49, 3-24.	2.8	63
27	Volatiles in basaltic magmas of ocean islands and their mantle sources: I. Melt compositions deduced from melt inclusions and glasses in the rocks. Geochemistry International, 2007, 45, 105-122.	0.7	13
28	Volatiles in basaltic magmas of ocean islands and their mantle sources: II. Estimation of contents in mantle reservoirs. Geochemistry International, 2007, 45, 313-326.	0.7	7
29	Average compositions of magmas and mantle sources of mid-ocean ridges and intraplate oceanic and continental settings estimated from the data on melt inclusions and quenched glasses of basalts. Petrology, 2007, 15, 335-368.	0.9	19
30	Average contents of incompatible and volatile components in depleted, oceanic plume, and within-plate continental mantle types. Doklady Earth Sciences, 2007, 415, 880-884.	0.7	0
31	Estimation of the average contents of H2O, Cl, F, and S in the depleted mantle on the basis of the compositions of melt inclusions and quenched glasses of mid-ocean ridge basalts. Geochemistry International, 2006, 44, 209-231.	0.7	28
32	Composition and chemical structure of oceanic mantle plumes. Petrology, 2006, 14, 452-476.	0.9	14
33	Partitioning of trace elements between carbonate-silicate melts and mantle minerals: Experiment and petrological consequences. Petrology, 2006, 14, 492-514.	0.9	21
34	High-temperature carbonatite melt and its interrelations with alkaline magmas of the Dunkel'dyk Complex, southeastern Pamirs. Doklady Earth Sciences, 2006, 410, 1148-1151.	0.7	8
35	Compositions of magmas and carbonate–silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy. Lithos, 2005, 85, 113-128.	1.4	38
36	Ferropericlaseâ€"a lower mantle phase in the upper mantle. Lithos, 2004, 77, 655-663.	1.4	63

Andrei Girnis

#	Article	IF	CITATIONS
37	The system MgO-Al2O3-SiO2-Cr2O3 revisited: reanalysis of Doroshev et al.'s (1997) experiments and new experiments. European Journal of Mineralogy, 2004, 15, 953-964.	1.3	32
38	Reduced magmatic fluids in basalt from the island of Disko, central West Greenland. Chemical Geology, 2002, 183, 365-371.	3.3	10
39	Experimental melting of a modally heterogeneous mantle. Mineralogy and Petrology, 2002, 75, 131-152.	1.1	22
40	Garnet-spinel-olivine-orthopyroxene equilibria in the FeO-MgO-Al2O3-SiO2-Cr2O3 system: II. Thermodynamic analysis. European Journal of Mineralogy, 1999, 11, 619-636.	1.3	40
41	CRYSTALLIZATION CONDITIONS OF THE GABBRO-NORITE OF THE YELAN' NICKEL-BEARING PLUTON. International Geology Review, 1989, 31, 502-505.	2.1	0