Elson Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4071773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society Special Publication, 2008, 294, 69-99.	0.8	218
2	The Neoproterozoic Sergipano orogenic belt, NE Brazil: A complete plate tectonic cycle in western Gondwana. Precambrian Research, 2010, 181, 64-84.	1.2	152
3	First precise U–Pb baddeleyite ages of 1500Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications. Lithos, 2013, 174, 144-156.	0.6	80
4	Development of symmetrical and asymmetrical fabrics in sheet-like igneous bodies: the role of magma flow and wall-rock displacements in theoretical and natural cases. Journal of Structural Geology, 2001, 23, 1415-1428.	1.0	72
5	LA-SF-ICP-MS zircon U–Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India. Journal of Asian Earth Sciences, 2016, 118, 125-137.	1.0	64
6	U–Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: Implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. Gondwana Research, 2009, 15, 86-97.	3.0	61
7	The Algodões amphibolite–tonalite gneiss sequence, Borborema Province, NE Brazil: Geochemical and geochronological evidence for Palaeoproterozoic accretion of oceanic plateau/back-arc basalts and adakitic plutons. Gondwana Research, 2009, 15, 71-85.	3.0	58
8	The Rio Capim volcanic–plutonic–sedimentary belt, São Francisco Craton, Brazil: Geological, geochemical and isotopic evidence for oceanic arc accretion during Palaeoproterozoic continental collision. Gondwana Research, 2011, 19, 735-750.	3.0	56
9	U-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton: Tectonic matches with the North China Craton and paleogeographic inferences. Precambrian Research, 2017, 293, 91-111.	1.2	56
10	Contrasting copper and chromium metallogenic evolution of terranes in the Palaeoproterozoic Itabuna–Salvador–Curaçá orogen, SĂ£o Francisco craton, Brazil: new zircon (SHRIMP) and Sm–Nd (model) ages and their significance for orogen-parallel escape tectonics. Precambrian Research, 2004, 128. 143-165.	1.2	54
11	U-Pb baddeleyite dating of the Proterozoic Pará de Minas dyke swarm in the São Francisco craton (Brazil) – implications for tectonic correlation with the Siberian, Congo and North China cratons. Gff, 2016, 138, 219-240.	0.4	53
12	Geochemistry and petrogenesis of sanukitoids and high-K anatectic granites from the Bundelkhand Craton, India: Implications for late-Archean crustal evolution. Journal of Asian Earth Sciences, 2019, 174, 263-282.	1.0	45
13	Geochemistry and Sm Nd isotope systematics of mafic-ultramafic rocks from the Babina and Mauranipur greenstone belts, Bundelkhand Craton, India: Implications for tectonic setting and Paleoarchean mantle evolution. Lithos, 2019, 330-331, 90-107.	0.6	43
14	Reconnaissance U–Pb geochronology of Precambrian quartzites from the Caldeirão belt and their basement, NE São Francisco Craton, Bahia, Brazil: implications for the early evolution of the Paleoproterozoic Itabuna–Salvador–Curaçá orogen. Journal of South American Earth Sciences, 2002, 15, 349-362.	0.6	42
15	Detrital zircon U–Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: From early passive margins to late foreland basins. Tectonophysics, 2015, 662, 183-194.	0.9	42
16	Age, composition, and source of continental arc- and syn-collision granites of the Neoproterozoic Sergipano Belt, Southern Borborema Province, Brazil. Journal of South American Earth Sciences, 2015, 58, 257-280.	0.6	41
17	Mesoarchaean to Palaeoproterozoic growth of the northern segment of the Itabuna–Salvador–Curaçá orogen, São Francisco craton, Brazil. Geological Society Special Publication, 2010, 338, 263-286.	0.8	40
18	Petrogenesis of the Canindé de São Francisco complex: A major Late Proterozoic gabbroic body in the Sergipe Foldbelt, northeastern Brazil, lournal of South American Earth Sciences, 1990, 3, 125-140.	0.6	38

ELSON OLIVEIRA

#	Article	IF	CITATIONS
19	Convergent margin magmatism and crustal evolution during Archean-Proterozoic transition in the Jiaobei terrane: Zircon U–Pb ages, geochemistry, and Nd isotopes of amphibolites and associated grey gneisses in the Jiaodong complex, North China Craton. Precambrian Research, 2015, 264, 98-118.	1.2	38
20	U–Pb ages and geochemistry of mafic dyke swarms from the Uauá Block, São Francisco Craton, Brazil: LIPs remnants relevant for Late Archaean break-up of a supercraton. Lithos, 2013, 174, 308-322.	0.6	37
21	3.30 Ga high-silica intraplate volcanic–plutonic system of the Gavião Block, São Francisco Craton, Brazil: Evidence of an intracontinental rift following the creation of insulating continental crust. Lithos, 2016, 266-267, 414-434.	0.6	36
22	Birthplace of the São Francisco Craton, Brazil: Evidence from 3.60 to 3.64ÂGa Gneisses of the Mairi Gneiss Complex. Terra Nova, 2020, 32, 281-289.	0.9	34
23	Geochronological and geochemical evidences for extension-related Neoarchean granitoids in the southern Sño Francisco Craton, Brazil. Precambrian Research, 2017, 294, 322-343.	1.2	31
24	A depositional model for a waveâ€dominated openâ€coast tidal flat, based on analyses of the Cambrian–Ordovician Lagarto and Palmares formations, northâ€eastern Brazil. Sedimentology, 2012, 59, 1613-1639.	1.6	30
25	Age and origin of the Neoproterozoic Brauna kimberlites: Melt generation within the metasomatized base of the São Francisco craton, Brazil. Chemical Geology, 2013, 353, 19-35.	1.4	28
26	Geochronology and petrogenesis of the TTG gneisses and granitoids from the Central Bundelkhand granite-greenstone terrane, Bundelkhand Craton, India: Implications for Archean crustal evolution and cratonization. Precambrian Research, 2021, 359, 106210.	1.2	27
27	The Fazenda Gavião granodiorite and associated potassic plutons as evidence for Palaeoproterozoic arc-continent collision in the Rio Itapicuru greenstone belt, Brazil. Journal of South American Earth Sciences, 2011, 32, 127-141.	0.6	25
28	Characterization of partial melting events in garnet-cordierite gneiss from the Kerala Khondalite Belt, India. Geoscience Frontiers, 2020, 11, 597-611.	4.3	21
29	Phase equilibria and trace element modeling of Archean sanukitoid melts. Precambrian Research, 2015, 269, 122-138.	1.2	20
30	Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil: Implications for the origin, evolution, and tectonic setting. Lithos, 2017, 284-285, 560-577.	0.6	20
31	Neoarchean reworking of TTG-like crust in the southernmost portion of the São Francisco Craton: U-Pb zircon dating and geochemical evidence from the São Tiago Batholith. Precambrian Research, 2018, 314, 353-376.	1.2	19
32	THE LAGOA DA VACA COMPLEX: AN ARCHAEAN LAYERED ANORTHOSITE BODY ON THE WESTERN EDGE OF THE UAUÕBLOCK, BAHIA, BRAZIL. Revista Brasileira De Geociências, 1998, 28, 201-208.	0.1	19
33	Genesis of the Precambrian copper-rich Caraiba hypersthenite-norite complex, Brazil. Mineralium Deposita, 1995, 30, 351.	1.7	18
34	Application of 55 multi-dimensional tectonomagmatic discrimination diagrams to Precambrian belts. International Geology Review, 2015, 57, 1365-1388.	1.1	17
35	The 2.58 Ga São José do Jacuipe gabbro-anorthosite stratiform complex, Itabuna-Salvador-Curaçá Orogen, São Francisco Craton, Brazil: Root of the Neoarchaean Caraiba continental arc?. Journal of South American Earth Sciences, 2017, 79, 326-341.	0.6	17
36	Detrital zircon U-Pb ages as evidence for deposition of the Saúde Complex in a Paleoproterozoic foreland basin, northern São Francisco Craton, Brazil. Journal of South American Earth Sciences, 2017, 79, 537-548.	0.6	17

ELSON OLIVEIRA

#	Article	IF	CITATIONS
37	Earth's oldest hotspot track at ca. 1.8 Ga advected by a global subduction system. Earth and Planetary Science Letters, 2022, 585, 117530.	1.8	17
38	Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil: Implications for Archean supercratons. Precambrian Research, 2019, 329, 108-123.	1.2	16
39	Plate tectonic settings for Precambrian basic rocks from Brazil by multidimensional tectonomagmatic discrimination diagrams and their limitations. International Geology Review, 2015, 57, 1566-1581.	1.1	15
40	Mesoarchaean (2820†Ma) high-pressure mafic granulite at UauÃi, São Francisco Craton, Brazil, and its potential significance for the assembly of Archaean supercratons. Precambrian Research, 2019, 331, 105366.	1.2	15
41	Field and geochronological evidence for origin of the Contendas-Mirante supracrustal Belt, São Francisco Craton, Brazil, as a Paleoproterozoic foreland basin. Precambrian Research, 2017, 299, 117-131.	1.2	14
42	Heavy minerals in provenance studies: an overview. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	14
43	Sediment provenance in the Palaeoproterozoic Rio Itapicuru greenstone belt, Brazil, indicates deposition on arc settings with a hidden 2.17–2.25Ga substrate. Journal of South American Earth Sciences, 2012, 38, 89-109.	0.6	11
44	Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings. Journal of South American Earth Sciences, 2013, 45, 117-146.	0.6	10
45	Provenance of zircon xenocrysts in the Neoproterozoic Brauna Kimberlite Field, São Francisco Craton, Brazil: Evidence for a thick Palaeoproterozoic lithosphere beneath the Serrinha block. Journal of South American Earth Sciences, 2013, 45, 83-96.	0.6	10
46	Anatomy of the Alto Alegre gneiss dome, São Francisco Craton, Brazil: A geological record of transpression along a Palaeoproterozoic arc-continent collision zone. Precambrian Research, 2016, 286, 250-268.	1.2	10
47	Tectonic setting of basic igneous and metaigneous rocks of Borborema Province, Brazil using multi-dimensional geochemical discrimination diagrams. Journal of South American Earth Sciences, 2015, 58, 309-317.	0.6	9
48	Petrogenesis of the late proterozoic cura�ï;½ mafic dyke swarm, Brazil: Asthenospheric magrnatisrn associated with continental collision. Mineralogy and Petrology, 1995, 53, 27-48.	0.4	7
49	High-K granites between the Archean Gavião and Jequié blocks, São Francisco Craton, Brazil: Implications for cratonization and amalgamation of the Rhyacian Atlantica continent. Journal of South American Earth Sciences, 2021, 105, 102920.	0.6	5
50	Evidence for change in crust formation process during the Paleoarchean in the São Francisco Craton (Gavião Block): Coupled zircon Lu-Hf and U-Pb isotopic analyses and tectonic implications. Precambrian Research, 2022, 368, 106472.	1.2	5
51	The Sergipano Belt. Regional Geology Reviews, 2017, , 241-254.	1.2	4
52	The Late Archaean UauÃi Mafic Dyke Swarm, São Francisco Craton, Brazil, and Implications for Palaeoproteozoic Extrusion Tectonics and Orogen Reconstruction. , 2011, , 19-31.		3
53	Geophysical data reveal a tectonic indentation and constrain the transition zone between the São Francisco Craton and the Borborema Paleoplates across the Neoproterozoic Sergipano Orogen, beneath the Cretaceous Tucano Basin, NE Brazil. Tectonophysics, 2022, 833, 229296.	0.9	3
54	Tectonic Implications of the Combined Use of Tectonomagmatic Geochemical Discrimination Diagrams and Indicators of Magma Flow Sense in Mafic Dykes. Acta Geologica Sinica, 2016, 90, 39-39.	0.8	0

#	Article	IF	CITATIONS
55	Tectonic Setting of Basic Rocks of Borborema Province, Brazil, Inferred from Multi-Dimensional Discrimination Diagrams. , 2016, , 449-453.		0