Jang-Joo Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4071640/jang-joo-kim-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 14,215 103 343 h-index g-index citations papers 6.77 6.9 15,494 372 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
343	Crystal Facet Engineering of TiO Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO Nanodots <i>Nano-Micro Letters</i> , 2022 , 14, 48	19.5	2
342	Breaking the Efficiency Limit of Deep-Blue Fluorescent OLEDs Based on Anthracene Derivatives (Adv. Mater. 1/2022). <i>Advanced Materials</i> , 2022 , 34, 2270002	24	
341	Breaking the Efficiency Limit of Deep-Blue Fluorescent OLEDs Based on Anthracene Derivatives. <i>Advanced Materials</i> , 2021 , e2100161	24	8
340	Random Nanowire Arrays Spontaneously Formed via Vacuum Deposition for Enhancing Light Extraction from Inverted Top-Emitting Organic Light-Emitting Diodes. <i>Fibers and Polymers</i> , 2021 , 22, 1511	2	1
339	Dihedral Angle Distribution of Thermally Activated Delayed Fluorescence Molecules in Solids Induces Dual Phosphorescence from Charge-Transfer and Local Triplet States. <i>Chemistry of Materials</i> , 2021 , 33, 5618-5630	9.6	7
338	TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix. <i>Journal of Physical Chemistry A</i> , 2021 , 1234-1242	2.8	5
337	Highly Efficient Deep Blue Phosphorescent OLEDs Based on Tetradentate Pt(II) Complexes Containing Adamantyl Spacer Groups. <i>Advanced Functional Materials</i> , 2021 , 31, 2100967	15.6	16
336	The effect of the electron-donor ability on the OLED efficiency of twisted donor-acceptor type emitters. <i>Organic Electronics</i> , 2021 , 95, 106187	3.5	O
335	Molecular library of OLED host materialsâ E valuating the multiscale simulation workflow. <i>Chemical Physics Reviews</i> , 2021 , 2, 031304	4.4	7
334	Impacts of Minority Charge Carrier Injection on the Negative Capacitance, Steady-State Current, and Transient Current of a Single-Layer Organic Semiconductor Device. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000622	6.4	2
333	A Broadband Multiplex Living Solar Cell. <i>Nano Letters</i> , 2020 , 20, 4286-4291	11.5	8
332	Effect of ortho-biphenyl substitution on the excited state dynamics of a multi-carbazole TADF molecule. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12075-12084	7.1	16
331	External Quantum Efficiency Exceeding 24% with CIE Value of 0.08 using a Novel Carbene-Based Iridium Complex in Deep-Blue Phosphorescent Organic Light-Emitting Diodes. <i>Advanced Materials</i> , 2020 , 32, e2002120	24	34
330	Highly Efficient Tandem White OLED Using a Hollow Structure. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901509	4.6	5
329	Highly efficient deep-blue fluorescence OLEDs with excellent charge balance based on phenanthro[9,10-d]oxazole-anthracene derivatives. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11168-11	176 ¹	23
328	Synthetic Strategy for Preserving Sky-Blue Electrophosphorescence in Square-Planar Pt(II) Complexes. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 604-617	4	11
327	Diffusion Mechanism of Exciplexes in Organic Optoelectronics. <i>Physical Review Applied</i> , 2020 , 13,	4.3	5

(2019-2020)

326	Design Strategy of Anthracene-Based Fluorophores toward High-Efficiency Deep Blue Organic Light-Emitting Diodes Utilizing Triplet-Triplet Fusion. <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet-Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet Fusion</i> . <i>ACS Applied Materials & Diodes Utilizing Triplet Fusion</i> .	9.5	23	
325	Simple method to extract extinction coefficients of films with the resolution of 10 using just transmission data and application to intermolecular charge-transfer absorption in an exciplex-forming organic film. <i>Optics Express</i> , 2020 , 28, 11892-11898	3.3	Ο	
324	Linear-shaped thermally activated delayed fluorescence emitter using 1,5-naphthyridine as an electron acceptor for efficient light extraction. <i>Organic Electronics</i> , 2020 , 78, 105600	3.5	8	
323	Routes for Efficiency Enhancement in Fluorescent TADF Exciplex Host OLEDs Gained from an Electro-Optical Device Model. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900804	6.4	14	
322	Highly Efficient Deep-Blue OLEDs using a TADF Emitter with a Narrow Emission Spectrum and High Horizontal Emitting Dipole Ratio. <i>Advanced Materials</i> , 2020 , 32, e2004083	24	72	
321	Effect of a Llinker of pushāpull DāBA donor molecules on the performance of organic photodetectors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11145-11152	7.1	8	
320	Comprehensive Model of the Degradation of Organic Light-Emitting Diodes and Application for Efficient, Stable Blue Phosphorescent Devices with Reduced Influence of Polarons. <i>Physical Review Applied</i> , 2020 , 14,	4.3	6	
319	Random organic nano-textured microstructures formed by photoexcitation for light extraction of blue OLEDs. <i>Organic Electronics</i> , 2020 , 87, 105892	3.5	5	
318	Growth mechanism of CH3NH3I in a vacuum processed perovskite. <i>Nanoscale Advances</i> , 2020 , 2, 3906-3	395111	2	
317	Blue thermally activated delayed fluorescence emitter using modulated triazines as electron acceptors. <i>Dyes and Pigments</i> , 2020 , 172, 107864	4.6	14	
316	Emitting dipole orientation and molecular orientation of homoleptic Ir(III) complexes. <i>Organic Electronics</i> , 2020 , 82, 105715	3.5	6	
315	Recent progress on exciplex-emitting OLEDs. <i>Journal of Information Display</i> , 2019 , 20, 105-121	4.1	16	
314	Phenazasiline/Spiroacridine Donor Combined with Methyl-Substituted Linkers for Efficient Deep Blue Thermally Activated Delayed Fluorescence Emitters. <i>ACS Applied Materials & Delayed Fluorescence</i> , 2019, 11, 7199-7207	9.5	47	
313	Analysis of the charge transfer and separation in electrically doped organic semiconductors by electron spin resonance spectroscopy. <i>Organic Electronics</i> , 2019 , 67, 242-246	3.5	5	
312	12-3: A Highly Mass-producible Nano-lens Array Technology for Optically Efficient Full-color Organic Light Emitting Diode Display Applications. <i>Digest of Technical Papers SID International Symposium</i> , 2019 , 50, 149-152	0.5	2	
311	Densely cross-linked polysiloxane dielectric for organic thin-film transistors with enhanced electrical stability. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5821-5829	7.1	12	
310	A spiro-silafluoreneaphenazasiline donor-based efficient blue thermally activated delayed fluorescence emitter and its host-dependent device characteristics. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4191-4198	7.1	22	
309	Controlling Horizontal Dipole Orientation and Emission Spectrum of Ir Complexes by Chemical Design of Ancillary Ligands for Efficient Deep-Blue Organic Light-Emitting Diodes. <i>Advanced Materials</i> , 2019 , 31, e1808102	24	61	

308	Enhanced Triplet-Triplet Annihilation of Blue Fluorescent Organic Light-Emitting Diodes by Generating Excitons in Trapped Charge-Free Regions. <i>ACS Applied Materials & Diverfaces</i> , 2019 , 11, 48121-48127	9.5	11
307	Triplet Harvesting by a Fluorescent Emitter Using a Phosphorescent Sensitizer for Blue Organic-Light-Emitting Diodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 26-30	9.5	28
306	Unveiling the Role of Dopant Polarity in the Recombination and Performance of Organic Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1800001	15.6	13
305	Dual pattern for enhancing light extraction efficiency of white organic light-emitting diodes. <i>Organic Electronics</i> , 2018 , 57, 201-205	3.5	11
304	High-Quality White OLEDs with Comparable Efficiencies to LEDs. <i>Advanced Optical Materials</i> , 2018 , 6, 1701349	8.1	37
303	Strategies for the Molecular Design of DonorâAcceptor-type Fluorescent Emitters for Efficient Deep Blue Organic Light Emitting Diodes. <i>Chemistry of Materials</i> , 2018 , 30, 857-863	9.6	62
302	Electronic Structure and Emission Process of Excited Charge Transfer States in Solids. <i>Chemistry of Materials</i> , 2018 , 30, 5648-5654	9.6	28
301	Control of Crystallinity in PbPc:C Blend Film and Application for Inverted Near-Infrared Organic Photodetector. <i>ACS Applied Materials & District Research</i> , 10, 25614-25620	9.5	17
300	Origin and Control of Orientation of Phosphorescent and TADF Dyes for High-Efficiency OLEDs. <i>Advanced Materials</i> , 2018 , 30, e1705600	24	155
299	Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. <i>Nature Communications</i> , 2018 , 9, 3207	17.4	70
298	Effect of the linker on the performance of organic photovoltaic devices based on pushāþull DâBA molecules. <i>New Journal of Chemistry</i> , 2018 , 42, 11458-11464	3.6	8
297	Inverted near-infrared organic photodetector with oriented lead (II) phthalocyanine molecules via substrate heating. <i>Organic Electronics</i> , 2018 , 61, 164-169	3.5	12
296	Cross-linked poly(hydroxy imide) gate-insulating materials for low-temperature processing of organic thin-film transistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13359-13366	7.1	10
295	Uniform Insulating Properties of Low-Temperature Curable Gate Dielectric for Organic Thin-Film Transistor Arrays on Plastic Substrate. <i>IEEE Electron Device Letters</i> , 2018 , 1-1	4.4	1
294	Exciplex: Its Nature and Application to OLEDs 2018 , 331-376		2
293	Electronic biosensing with flexible organic transistor devices. <i>Flexible and Printed Electronics</i> , 2018 , 3, 034003	3.1	19
292	Optical Analysis of Power Distribution in Top-Emitting Organic Light Emitting Diodes Integrated with Nanolens Array Using Finite Difference Time Domain. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 18942-18947	9.5	14
291	A simple method to measure intermolecular charge-transfer absorption of organic films. <i>Organic Electronics</i> , 2018 , 62, 511-515	3.5	11

(2017-2018)

290	on Ortho-Carbazole-Appended Triarylboron Emitters: Above 32% External Quantum Efficiency in Blue Devices. <i>Advanced Optical Materials</i> , 2018 , 6, 1800385	8.1	80
289	Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency. <i>ACS Applied Materials & Diodes amp; Interfaces</i> , 2017 , 9, 3277-3281	9.5	96
288	Hole mobility in various transition-metal-oxides doped organic semiconductor films. <i>Applied Physics Letters</i> , 2017 , 110, 053303	3.4	1
287	Synthesis and characterization of perfluorinated phenyl-substituted Ir(III) complex for pure green emission. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3107-3111	7.1	16
286	Combined Inter- and Intramolecular Charge-Transfer Processes for Highly Efficient Fluorescent Organic Light-Emitting Diodes with Reduced Triplet Exciton Quenching. <i>Advanced Materials</i> , 2017 , 29, 1606448	24	110
285	Azasiline-based thermally activated delayed fluorescence emitters for blue organic light emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1027-1032	7.1	42
284	Air void optical scattering structure for high-brightness organic light emitting diodes. <i>Ceramics International</i> , 2017 , 43, S455-S459	5.1	4
283	Dependence of Pt(II) based phosphorescent emitter orientation on host molecule orientation in doped organic thin films. <i>Organic Electronics</i> , 2017 , 45, 279-284	3.5	18
282	Harnessing Triplet Excited States by Fluorescent Dopant Utilizing Codoped Phosphorescent Dopant in Exciplex Host for Efficient Fluorescent Organic Light Emitting Diodes. <i>Advanced Optical Materials</i> , 2017 , 5, 1600749	8.1	43
281	Relationship between molecular structure and dipole orientation of thermally activated delayed fluorescent emitters. <i>Organic Electronics</i> , 2017 , 42, 337-342	3.5	34
280	An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes. <i>ACS Applied Materials & Empty Series</i> , 2017, 9, 37883-37887	9.5	45
279	Unraveling the orientation of phosphors doped in organic semiconducting layers. <i>Nature Communications</i> , 2017 , 8, 791	17.4	44
278	Highly Efficient, Conventional, Fluorescent Organic Light-Emitting Diodes with Extended Lifetime. <i>Advanced Materials</i> , 2017 , 29, 1702159	24	60
277	Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures. <i>Optical Materials</i> , 2017 , 72, 828-832	3.3	5
276	Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes. <i>Applied Physics Letters</i> , 2017 , 111, 203301	3.4	36
275	Crystallization-assisted nano-lens array fabrication for highly efficient and color stable organic light emitting diodes. <i>Nanoscale</i> , 2017 , 9, 230-236	7.7	15
274	Unraveling the origin of the orientation of Ir complexes doped in organic semiconducting layers 2017 ,		1
273	50-2: Invited Paper: Highly Efficient OLEDs using Exciplex Hosts. <i>Digest of Technical Papers SID</i> International Symposium, 2017 , 48, 746-749	0.5	

Quantitative Analysis of the Efficiency of OLEDs. ACS Applied Materials & amp; Interfaces, 2016, 8, 33010-33018 22

271	Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer. <i>Advanced Materials</i> , 2016 , 28, 4920-5	24	191
270	Crystal Organic Light-Emitting Diodes with Perfectly Oriented Non-Doped Pt-Based Emitting Layer. <i>Advanced Materials</i> , 2016 , 28, 2526-32	24	168
269	Composition-controlled organometal halide perovskite via CH3NH3I pressure in a vacuum co-deposition process. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5663-5668	13	21
268	Direct formation of nano-pillar arrays by phase separation of polymer blend for the enhanced out-coupling of organic light emitting diodes with low pixel blurring. <i>Optics Express</i> , 2016 , 24, A488-96	3.3	12
267	Boosting Triplet Harvest by Reducing Nonradiative Transition of Exciplex toward Fluorescent Organic Light-Emitting Diodes with 100% Internal Quantum Efficiency. <i>Chemistry of Materials</i> , 2016 , 28, 1936-1941	9.6	107
266	Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility. <i>ACS Applied Materials & Enhanced Mobility</i> . <i>ACS Applied Materials & Enhanced Mobility</i> .	9.5	21
265	Phosphorescent OLEDs: Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer (Adv. Mater. 24/2016). <i>Advanced Materials</i> , 2016 , 28, 4758	24	4
264	Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules. <i>AIP Advances</i> , 2016 , 6, 045221	1.5	6
263	New sky-blue and bluishågreen emitting Ir(III) complexes containing an azoline ancillary ligand for highly efficient PhOLEDs. <i>Dyes and Pigments</i> , 2016 , 131, 60-68	4.6	14
262	Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN). <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 9806-10	9.5	77
261	N-Type Molecular Doping in Organic Semiconductors: Formation and Dissociation Efficiencies of a Charge Transfer Complex. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 9475-9481	3.8	23
260	Blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting material 2016 ,		2
259	Design of Heteroleptic Ir Complexes with Horizontal Emitting Dipoles for Highly Efficient Organic Light-Emitting Diodes with an External Quantum Efficiency of 38%. <i>Chemistry of Materials</i> , 2016 , 28, 7505-7510	9.6	85
258	Synthesis and characterization of highly efficient blue Ir(III) complexes by tailoring Ediketonate ancillary ligand for highly efficient PhOLED applications. <i>Organic Electronics</i> , 2016 , 39, 91-99	3.5	11
257	Highly efficient non-doped deep blue fluorescent emitters with horizontal emitting dipoles using interconnecting units between chromophores. <i>Chemical Communications</i> , 2016 , 52, 10956-9	5.8	37
256	Triplet Harvesting by a Conventional Fluorescent Emitter Using Reverse Intersystem Crossing of Host Triplet Exciplex. <i>Advanced Optical Materials</i> , 2015 , 3, 895-899	8.1	64
255	PhOLEDs: Finely Tuned Blue Iridium Complexes with Varying Horizontal Emission Dipole Ratios and Quantum Yields for Phosphorescent Organic Light-Emitting Diodes (Advanced Optical Materials 2/2015). <i>Advanced Optical Materials</i> , 2015 , 3, 140-140	8.1	

(2015-2015)

254	Enhancement of the Fill Factor through an Increase of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. <i>ACS Applied Materials & Distriction of the Fill Factor through an Increase of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. ACS Applied Materials & Distriction of the Fill Factor through an Increase of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. ACS Applied Materials & Distriction of the Fill Factor through an Increase of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. ACS Applied Materials & Distriction of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. ACS Applied Materials & Distriction of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. ACS Applied Materials & Distriction of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. ACS Applied Materials & Distriction of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. ACS Applied Materials & Distriction of the Crystallinity in Fullerene-Based Small-Photovoltain or Cells. ACS Applied Materials & Distriction of the Crystallinity in Fullerene-Based Small-Photovoltain or Cells. ACS Applied Materials & Distriction of the Crystallinity in Fullerene-Based Small Photovoltain or Cells & Distriction of the Crystallinity in Fullerene-Based Small Photovoltain or Cells & Distriction of the Crystallinity in Fullerene-Based Small Photovoltain or Cells & Distriction of the Crystallinity in Fullerene-Based Small Photovoltain or Cells & Distriction of the Crystallinity in Fullerene-Based Small Photovoltain or Cells & Distriction of the Crystallinity in Fullerene-Based Small Photovoltain or Cells & Distriction of the Crystallinity in Fullerene-Based Small Photovoltain or Cells & Distriction of the Crystallinity in Full Photovoltain or Cells & Distriction or Cells & Distriction of Cells & Distriction or Cells & Distriction of Cell</i>	9.5	3
253	Controlling Emitting Dipole Orientation with Methyl Substituents on Main Ligand of Iridium Complexes for Highly Efficient Phosphorescent Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2015 , 3, 1191-1196	8.1	39
252	Efficient Vacuum-Deposited Tandem Organic Solar Cells with Fill Factors Higher Than Single-Junction Subcells. <i>Advanced Energy Materials</i> , 2015 , 5, 1500228	21.8	10
251	Influence of Host Molecules on Emitting Dipole Orientation of Phosphorescent Iridium Complexes. <i>Chemistry of Materials</i> , 2015 , 27, 2767-2769	9.6	64
250	Luminescence from oriented emitting dipoles in a birefringent medium. <i>Optics Express</i> , 2015 , 23, A279-	93 .3	42
249	Triplet Harvesting: Triplet Harvesting by a Conventional Fluorescent Emitter Using Reverse Intersystem Crossing of Host Triplet Exciplex (Advanced Optical Materials 7/2015). <i>Advanced Optical Materials</i> , 2015 , 3, 846-846	8.1	1
248	Vacuum-depositable thiophene- and benzothiadiazole-based donor materials for organic solar cells. <i>New Journal of Chemistry</i> , 2015 , 39, 9591-9595	3.6	14
247	Thermally Activated Delayed Fluorescence from Azasiline Based Intramolecular Charge-Transfer Emitter (DTPDDA) and a Highly Efficient Blue Light Emitting Diode. <i>Chemistry of Materials</i> , 2015 , 27, 6675-6681	9.6	183
246	Fully vacuumâprocessed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. <i>Organic Electronics</i> , 2015 , 17, 102-106	3.5	100
245	Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability. <i>Organic Electronics</i> , 2015 , 17, 115-120	3.5	30
244	Effect of Doping Concentration on Microstructure of Conjugated Polymers and Characteristics in N-Type Polymer Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2015 , 25, 758-767	15.6	47
243	An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage. <i>Advanced Functional Materials</i> , 2015 , 25, 361-366	15.6	224
242	Highly efficient deep-blue phosphorescence from heptafluoropropyl-substituted iridium complexes. <i>Chemical Communications</i> , 2015 , 51, 58-61	5.8	83
241	Vacuum nanohole array embedded phosphorescent organic light emitting diodes. <i>Scientific Reports</i> , 2015 , 5, 8685	4.9	29
240	Crystallinity and interface of 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile thin films between organic and transparent conductive oxide layers. <i>Applied Physics Express</i> , 2015 , 8, 051601	2.4	
239	Charge transport in electrically doped amorphous organic semiconductors. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 984-1000	4.8	38
238	Enhanced light extraction efficiency in organic light-emitting diode with randomly dispersed nanopattern. <i>Optics Letters</i> , 2015 , 40, 5838-41	3	6
237	Finely Tuned Blue Iridium Complexes with Varying Horizontal Emission Dipole Ratios and Quantum Yields for Phosphorescent Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2015 , 3, 211-220	8.1	29

236	Organic Electronics: An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage (Adv. Funct. Mater. 3/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 342-342	15.6	1
235	Multilayer epitaxial growth of lead phthalocyanine and C(70) using CuBr as a templating layer for enhancing the efficiency of organic photovoltaic cells. <i>ACS Applied Materials & Company: Interfaces</i> , 2014 , 6, 4286-91	9.5	17
234	Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit. <i>Advanced Materials</i> , 2014 , 26, 4730-4	24	215
233	Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle. <i>Applied Physics Letters</i> , 2014 , 104, 073301	3.4	19
232	A fluorescent organic light-emitting diode with 30% external quantum efficiency. <i>Advanced Materials</i> , 2014 , 26, 5684-8	24	327
231	Deep-Blue Phosphorescent Emitters with Phosphoryl Groups for Organic Light-Emitting Diodes by Solution Processes. <i>Israel Journal of Chemistry</i> , 2014 , 54, 993-998	3.4	6
230	Light-Emitting-Diodes: High-Efficiency Orange and Tandem White Organic Light-Emitting Diodes Using Phosphorescent Dyes with Horizontally Oriented Emitting Dipoles (Adv. Mater. 33/2014). <i>Advanced Materials</i> , 2014 , 26, 5863-5863	24	1
229	Vacuum nano-hole array embedded organic light emitting diodes. <i>Nanoscale</i> , 2014 , 6, 2642-8	7.7	23
228	Correlation of the electronic structure of an interconnection unit with the device performance of tandem organic solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5450-5454	13	5
227	The epitaxial growth of lead phthalocyanine on copper halogen compounds as the origin of templating effects. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8730-8735	13	10
226	Pyrene based materials for exceptionally deep blue OLEDs. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9083-9086	7.1	105
225	Highly efficient inverted top emitting organic light emitting diodes using a horizontally oriented green phosphorescent emitter. <i>Organic Electronics</i> , 2014 , 15, 2715-2718	3.5	6
224	Vacuum processable donor material based on dithieno[3,2-b:2?,3?-d]thiophene and pyrene for efficient organic solar cells. <i>RSC Advances</i> , 2014 , 4, 24453-24457	3.7	6
223	Flexible Electronics: Extremely Flexible Transparent Conducting Electrodes for Organic Devices (Adv. Energy Mater. 1/2014). <i>Advanced Energy Materials</i> , 2014 , 4,	21.8	4
222	Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. <i>Nature Communications</i> , 2014 , 5, 4769	17.4	280
221	Langevin and Trap-Assisted Recombination in Phosphorescent Organic Light Emitting Diodes. <i>Advanced Functional Materials</i> , 2014 , 24, 4681-4688	15.6	120
220	Highly Efficient Vacuum-Processed Organic Solar Cells Containing Thieno[3,2-b]thiophene-thiazole. Journal of Physical Chemistry C, 2014 , 118, 11559-11565	3.8	19
219	Highly efficient bluish green phosphorescent organic light-emitting diodes based on heteroleptic iridium(III) complexes with phenylpyridine main skeleton. <i>Organic Electronics</i> , 2014 , 15, 1687-1694	3.5	6

(2013-2014)

218	Temperature and interfacial buffer layer effects on the nanostructure in a copper(II) phthalocyanine: Fullerene bulk heterojunction. <i>Materials Research Bulletin</i> , 2014 , 58, 102-106	5.1	
217	Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. <i>Advanced Materials</i> , 2014 , 26, 3844-7	24	266
216	High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles. <i>Advanced Materials</i> , 2014 , 26, 5864-8	24	137
215	Effect of different p-dopants in an interconnection unit on the performance of tandem organic solar cells. <i>Organic Electronics</i> , 2014 , 15, 1805-1809	3.5	5
214	Formation of perfect ohmic contact at indium tin oxide/N,NRdi(naphthalene-1-yl)-N,NRdiphenyl-benzidine interface using ReO3. <i>Scientific Reports</i> , 2014 , 4, 3902	4.9	41
213	A high performance semitransparent organic photodetector with green color selectivity. <i>Applied Physics Letters</i> , 2014 , 105, 213301	3.4	22
212	Enhanced light extraction efficiency in organic light emitting diodes using a tetragonal photonic crystal with hydrogen silsesquioxane. <i>Optics Letters</i> , 2014 , 39, 5901-4	3	14
211	Extremely Flexible Transparent Conducting Electrodes for Organic Devices. <i>Advanced Energy Materials</i> , 2014 , 4, 1300474	21.8	73
210	Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter. <i>Advanced Functional Materials</i> , 2013 , 23, 3896-3900	15.6	443
209	Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes. <i>Advanced Materials</i> , 2013 , 25, 3571-7	24	149
208	Low Roll-Off and High Efficiency Orange Organic Light Emitting Diodes with Controlled Co-Doping of Green and Red Phosphorescent Dopants in an Exciplex Forming Co-Host. <i>Advanced Functional Materials</i> , 2013 , 23, 4105-4110	15.6	175
207	Microcavity tandem solar cells with a short circuit current higher than single cells. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 114, 59-64	6.4	10
206	Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14321-8	16.4	220
205	Molecular alignment and nanostructure of 1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (HATCN) thin films on organic surfaces. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1260-1264	7.1	11
204	High performance organic planar heterojunction solar cells by controlling the molecular orientation. <i>Current Applied Physics</i> , 2013 , 13, 7-11	2.6	18
203	Degradation mechanism of green phosphorescent dye doped polymer light-emitting diodes. <i>Thin Solid Films</i> , 2013 , 531, 419-423	2.2	
202	High efficiency and non-color-changing orange organic light emitting diodes with red and green emitting layers. <i>Organic Electronics</i> , 2013 , 14, 1856-1860	3.5	26
201	Optical analysis of organic photovoltaic cells incorporating graphene as a transparent electrode. <i>Organic Electronics</i> , 2013 , 14, 1496-1503	3.5	11

200	Near infra-red transparent Mo-doped In2O3 by hetero targets sputtering for phosphorescent organic light emitting diodes. <i>Organic Electronics</i> , 2013 , 14, 926-933	3.5	14
199	Interfacial Doping for Efficient Charge Injection in Organic Semiconductors 2013 , 91-118		
198	Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit. <i>Chemical Communications</i> , 2013 , 49, 4664-6	5.8	118
197	Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency. <i>Advanced Functional Materials</i> , 2013 , 23, 4914-4920	15.6	360
196	An efficient interconnection unit composed of electron-transporting layer/metal/p-doped hole-transporting layer for tandem organic photovoltaics. <i>Applied Physics Letters</i> , 2013 , 102, 203903	3.4	13
195	Enhanced light out-coupling of OLEDs with low haze by inserting randomly dispersed nanopillar arrays formed by lateral phase separation of polymer blends. <i>Small</i> , 2013 , 9, 3858-63	11	70
194	Electron injection and transport for high-performance inverted organic light-emitting diodes. Journal of Information Display, 2013 , 14, 39-48	4.1	19
193	Doping-concentration-dependent hole mobility in a ReO3 doped organic semiconductor of 4,4?,4?-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine. <i>Applied Physics Letters</i> , 2013 , 102, 183301	3.4	19
192	Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes. <i>Applied Physics Letters</i> , 2013 , 102, 153306	3.4	89
191	Organic Leds: Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency (Adv. Funct. Mater. 39/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 4913-4913	15.6	1
190	An organic pâll junction as an efficient and cathode independent electron injection layer for flexible inverted organic light emitting diodes. <i>Organic Electronics</i> , 2012 , 13, 545-549	3.5	22
189	High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency. <i>Organic Electronics</i> , 2012 , 13, 826-832	3.5	21
188	Outcoupling efficiency of organic light emitting diodes employing graphene as the anode. <i>Organic Electronics</i> , 2012 , 13, 1081-1085	3.5	18
187	Low-Temperature Organic (CYTOP) Passivation for Improvement of Electric Characteristics and Reliability in IGZO TFTs. <i>IEEE Electron Device Letters</i> , 2012 , 33, 381-383	4.4	58
186	The Mechanism of Charge Generation in Charge-Generation Units Composed of p-Doped Hole-Transporting Layer/HATCN/n-Doped Electron-Transporting Layers. <i>Advanced Functional Materials</i> , 2012 , 22, 855-860	15.6	82
185	Organic Light-Emitting Diodes: The Mechanism of Charge Generation in Charge-Generation Units Composed of p-Doped Hole-Transporting Layer/HATCN/n-Doped Electron-Transporting Layers (Adv. Funct. Mater. 4/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 879-879	15.6	
184	Synthesis and characterization of new blue light emitting iridium complexes containing a trimethylsilyl group. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22721		29
183	A high performance transparent inverted organic light emitting diode with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile as an organic buffer layer. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15262		57

(2011-2012)

182	Small molecular host based on carbazole and m-terphenyl derivatives for efficient solution processed organic light-emitting diodes. <i>Synthetic Metals</i> , 2012 , 162, 303-308	3.6	6	
181	High performance inkjet printed phosphorescent organic light emitting diodes based on small molecules commonly used in vacuum processes. <i>Thin Solid Films</i> , 2012 , 520, 6954-6958	2.2	29	
180	Pyrene end-capped oligothiophene derivatives for organic thin-film transistors and organic solar cells. <i>New Journal of Chemistry</i> , 2012 , 36, 1813	3.6	31	
179	Enhancement of near-infrared absorption with high fill factor in lead phthalocyanine-based organic solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9077		51	
178	Determination of the interface energy level alignment of a doped organic hetero-junction using capacitanceâlloltage measurements. <i>Organic Electronics</i> , 2012 , 13, 2346-2351	3.5	34	
177	Transparent indium oxide films doped with high Lewis acid strength Ge dopant for phosphorescent organic light-emitting diodes. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 325102	3	13	
176	Synthesis and characterization of a new iridium(III) complex with bulky trimethylsilylxylene and applications for efficient yellow-green emitting phosphorescent organic light emitting diodes. <i>Dyes and Pigments</i> , 2012 , 92, 603-609	4.6	26	
175	Interfacial doping for efficient charge injection in organic semiconductors. <i>Physica Status Solidi (A)</i> Applications and Materials Science, 2012 , 209, 1399-1413	1.6	41	
174	Photoconductivity of C60 as an Origin of Bias-Dependent Photocurrent in Organic Photovoltaics. <i>Advanced Functional Materials</i> , 2012 , 22, 3089-3094	15.6	39	
173	Initial Growth Mode, Nanostructure, and Molecular Stacking of a ZnPc:C60 Bulk Heterojunction. <i>Advanced Functional Materials</i> , 2012 , 22, 4244-4248	15.6	13	
172	High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer. <i>Applied Physics Letters</i> , 2012 , 101, 113301	3.4	13	
171	Rhenium oxide as an efficient p-dopant to overcome S-shaped current density-voltage curves in organic photovoltaics with a deep highest occupied molecular orbital level donor layer. <i>Applied Physics Letters</i> , 2012 , 101, 153303	3.4	16	
170	CuI interlayers in lead phthalocyanine thin films enhance near-infrared light absorption. <i>Applied Physics Letters</i> , 2012 , 100, 263303	3.4	27	
169	Surface dependent thermal evolution of the nanostructures in ultra-thin copper(II) phthalocyanine films. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8881		19	
168	Transparent Ti-In-Sn-O multicomponent anodes for highly efficient phosphorescent organic light emitting diodes. <i>Journal of Applied Physics</i> , 2012 , 112, 023513	2.5	17	
167	Energy transfer from exciplexes to dopants and its effect on efficiency of organic light-emitting diodes. <i>Journal of Applied Physics</i> , 2011 , 110, 124519	2.5	54	
166	In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2170-6	16.4	77	
165	A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection. <i>Organic Electronics</i> , 2011 , 12, 1763-1767	3.5	65	

164	Synthesis and characterization of solution-processable highly branched iridium (III) complex cored dendrimer based on tetraphenylsilane dendron for host-free green phosphorescent organic light emitting diodes. <i>Dyes and Pigments</i> , 2011 , 90, 139-145	4.6	34
163	Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 4217-21	11.8	25
162	Invited paper: Nanostructures of a mixed donor and acceptor layer in organic photovoltaics. <i>Electronic Materials Letters</i> , 2011 , 7, 93-104	2.9	15
161	Synthesis and device performance of new efficient blue copolymers containing biphenylenevinylene and triphenyldiamine. <i>Macromolecular Research</i> , 2011 , 19, 629-634	1.9	8
160	Reduction of Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer Bulk Heterojunction Solar Cells. <i>Advanced Functional Materials</i> , 2011 , 21, 343-347	15.6	67
159	Formation of Bulk Heterojunctions by Alternative Thermal Deposition and Its Structure Analysis for High Efficiency Small Molecular Organic Photovoltaics. <i>Advanced Functional Materials</i> , 2011 , 21, 2067-2	0 7 5.6	28
158	Effects of Symmetry of Ir (III) Complex on the Photophysical Properties and Device Performances. <i>Molecular Crystals and Liquid Crystals</i> , 2011 , 550, 284-293	0.5	
157	Grazing Incidence Small-Angle X-ray Scattering Analysis of Initial Growth of Planar Organic Molecules Affected by Substrate Surface Energy. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1710-17	144	19
156	Flexible OLEDs and organic electronics. Semiconductor Science and Technology, 2011, 26, 030301	1.8	26
155	Hole injection/transport materials derived from Heck and sol-gel chemistry for application in solution-processed organic electronic devices. <i>Journal of the American Chemical Society</i> , 2011 , 133, 137	5 ¹⁶ 24	62
154	Origin of charge generation efficiency of metal oxide p-dopants in organic semiconductors. <i>Organic Electronics</i> , 2011 , 12, 950-954	3.5	42
153	Homogeneous dispersion of organic p-dopants in an organic semiconductor as an origin of high charge generation efficiency. <i>Applied Physics Letters</i> , 2011 , 98, 173303	3.4	39
152	Large-area organic solar cells with metal subelectrode on indium tin oxide anode. <i>Applied Physics Letters</i> , 2010 , 96, 173301	3.4	32
151	Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures. <i>Applied Physics Letters</i> , 2010 , 97, 083306	3.4	35
150	Synthesis and Characterization of Bis-Orthometalated Ir(III) Complex Consisting of Non-Carbon-Coordinating Ligand. <i>Molecular Crystals and Liquid Crystals</i> , 2010 , 531, 40/[340]-46/[346]	0.5	
149	Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electronâfiole balanced spacers. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 405102	3	14
148	Solution-processed photonic crystals to enhance the light outcoupling efficiency of organic light-emitting diodes. <i>Applied Optics</i> , 2010 , 49, 4024-8	0.2	18
147	Estimation of the mean emission zone in phosphorescent organic light-emitting diodes with a thin emitting layer. <i>Optics Express</i> , 2010 , 18, 16715-21	3.3	5

(2009-2010)

146	Near-IR electromer emission from new ambipolar carbazole containing phosphorescent dendrimer based organic light emitting diode. <i>Synthetic Metals</i> , 2010 , 160, 1994-1999	3.6	11
145	Novel bi-nuclear boron complex with pyrene ligand: red-light emitting as well as electron transporting material in organic light-emitting diodes. <i>Organic Letters</i> , 2010 , 12, 1272-5	6.2	80
144	Novel binaphthyl-containing bi-nuclear boron complex with low concentration quenching effect for efficient organic light-emitting diodes. <i>Chemical Communications</i> , 2010 , 46, 6512-4	5.8	59
143	Planarization of nanopatterned substrates using solution process to enhance outcoupling efficiency of organic light emitting diodes. <i>Current Applied Physics</i> , 2010 , 10, e139-e142	2.6	15
142	Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. <i>Organic Electronics</i> , 2010 , 11, 1010-1015	3.5	100
141	Effect of host organic semiconductors on electrical doping. <i>Organic Electronics</i> , 2010 , 11, 486-489	3.5	54
140	Corrugated organic light emitting diodes for enhanced light extraction. <i>Organic Electronics</i> , 2010 , 11, 711-716	3.5	72
139	Deep-blue phosphorescent iridium complexes with picolinic acid N-oxide as the ancillary ligand for high efficiency organic light-emitting diodes. <i>Organic Electronics</i> , 2010 , 11, 564-572	3.5	76
138	A transparent conducting oxide as an efficient middle electrode for flexible organic tandem solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 542-546	6.4	34
137	Rapid patterning of single-wall carbon nanotubes by interlayer lithography. Small, 2010, 6, 2530-4	11	18
136	High efficiency p-i-n top-emitting organic light-emitting diodes with a nearly Lambertian emission pattern. <i>Journal of Applied Physics</i> , 2009 , 106, 063114	2.5	24
135	Electronic and chemical properties of cathode structures using 4,7-diphenyl-1,10-phenanthroline doped with rubidium carbonate as electron injection layers. <i>Journal of Applied Physics</i> , 2009 , 105, 11371	4·5	30
134	Rubidium-Carbonate-Doped 4,7-Diphenyl-1,10-phenanthroline Electron Transporting Layer for High-Efficiency p-i-n Organic Light Emitting Diodes. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, J8		38
133	Real Time Investigation of the Interface between a P3HT:PCBM Layer and an Al Electrode during Thermal Annealing. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1269-73	4.8	43
132	Excitation energy transfer in organic materials: from fundamentals to optoelectronic devices. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1203-31	4.8	160
131	Conjugated Triphenylene Polymers for Blue OLED Devices. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1279-83	4.8	35
130	Enhanced efficiency of dye-sensitized solar cells by UVâD3 treatment of TiO2 layer. <i>Current Applied Physics</i> , 2009 , 9, 404-408	2.6	55
129	Electroluminescence from monolayer of quantum dots formed by multiple dip-coating processes. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 803-807	1.3	4

128	The effect of Al electrodes on the nanostructure of poly(3-hexylthiophene): Fullerene solar cell blends during thermal annealing. <i>Organic Electronics</i> , 2009 , 10, 1505-1510	3.5	48
127	Thickness dependence of PL efficiency of organic thin films. <i>Chemical Physics</i> , 2009 , 355, 25-30	2.3	17
126	Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes. <i>Applied Physics Letters</i> , 2009 , 94, 253302	3.4	89
125	Highly efficient orange organic light-emitting diodes using a novel iridium complex with imide group-containing ligands. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8824		46
124	Dendritic Ir(III) complexes functionalized with triphenylsilylphenyl groups: Synthesis, DFT calculation and comprehensive structure-property correlation. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8347		54
123	Effectiveness of p-dopants in an organic hole transporting material. <i>Applied Physics Letters</i> , 2009 , 94, 123306	3.4	84
122	P-161: Effectiveness of p-Dopants in an Organic Hole Transporting Material. <i>Digest of Technical Papers SID International Symposium</i> , 2009 , 40, 1719	0.5	2
121	35.1: Invited Paper: Electrical Doping for High Performance Organic Light Emitting Diodes. <i>Digest of Technical Papers SID International Symposium</i> , 2009 , 40, 491	0.5	1
120	Self-assembled perpendicular growth of organic nanoneedles via simple vapor-phase deposition: one-step fabrication of a superhydrophobic surface. <i>Chemical Communications</i> , 2008 , 2998-3000	5.8	34
119	Organic thin-film transistors based on 2,6-bis(2-arylvinyl)anthracene: high-performance organic semiconductors. <i>New Journal of Chemistry</i> , 2008 , 32, 2006	3.6	7
118	High-performance organic semiconductors for thin-film transistors based on 2,6-bis(2-thienylvinyl)anthracene. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2234		24
117	Transparent Conducting Indium Zinc Tin Oxide Anode for Highly Efficient Phosphorescent Organic Light Emitting Diodes. <i>Journal of the Electrochemical Society</i> , 2008 , 155, J1	3.9	52
116	Characteristics of Ni-Doped IZO Layers Grown on IZO Anode for Enhancing Hole Injection in OLEDs. Journal of the Electrochemical Society, 2008 , 155, J340	3.9	7
115	Highly efficient tandem p-i-n organic light-emitting diodes adopting a low temperature evaporated rhenium oxide interconnecting layer. <i>Applied Physics Letters</i> , 2008 , 93, 103304	3.4	74
114	Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application. <i>Applied Physics Letters</i> , 2008 , 92, 223307	3.4	71
113	Correlation of photoluminescent quantum efficiency and device characteristics for the soluble electrophosphorescent light emitter with interfacial layers. <i>Journal of Applied Physics</i> , 2008 , 104, 02451	2 .5	6
112	Investigations of electron-injection mechanisms and interfacial chemical reactions of Bphen doped with rubidium carbonate in OLEDs 2008 ,		3
111	Highly flexible, transparent, and low resistance indium zinc oxideâAgâIhdium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light light-emitting diodes. <i>Thin Solid Films</i> , 2008 , 516, 7881-7885	2.2	72

(2007-2008)

110	Synthesis and light-emitting properties of a novel Econjugated poly[di(p-phenyleneethynylene)-alt- (p-phenylenecyanovinylene)] containing n-octyloxy side branches. <i>Journal of Applied Polymer Science</i> , 2008 , 108, 914-922	2.9	4
109	Synthesis and characterization of novel poly(arylenevinylene) derivative. <i>Journal of Applied Polymer Science</i> , 2008 , 110, 2009-2015	2.9	5
108	High-Efficiency Deep-Blue Light-Emitting Diodes Based on Phenylquinoline/Carbazole-Based Compounds. <i>Advanced Functional Materials</i> , 2008 , 18, 3922-3930	15.6	162
107	Efficient, Color Stable White Organic Light-Emitting Diode Based on High Energy Level Yellowish-Green Dopants. <i>Advanced Materials</i> , 2008 , 20, 1957-1961	24	153
106	Iridium Complexes with Cyclometalated 2-Cycloalkenyl-Pyridine Ligands as Highly Efficient Emitters for Organic Light-Emitting Diodes. <i>Advanced Materials</i> , 2008 , 20, 2003-2007	24	118
105	A host material containing tetraphenylsilane for phosphorescent OLEDs with high efficiency and operational stability. <i>Organic Electronics</i> , 2008 , 9, 452-460	3.5	39
104	Air stable C60 based n-type organic field effect transistor using a perfluoropolymer insulator. <i>Organic Electronics</i> , 2008 , 9, 481-486	3.5	35
103	High performance top-emitting organic light-emitting diodes with copper iodide-doped hole injection layer. <i>Organic Electronics</i> , 2008 , 9, 805-808	3.5	58
102	Highly Efficient Light-Harvesting System Based on a Phosphorescent Acceptor Coupled with Dendrimer Donors via SingletâBinglet and TripletâBriplet Energy Transfer. <i>Chemistry of Materials</i> , 2007 , 19, 3673-3680	9.6	101
101	Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes. <i>Applied Physics Letters</i> , 2007 , 90, 163516	3.4	37
100	Synthesis and Light-Emitting Properties of New Polyimides Containing Ethynylene Units in the Main Chain. <i>Macromolecular Materials and Engineering</i> , 2007 , 292, 844-854	3.9	6
99	High-Performance Flexible Organic Light-Emitting Diodes Using Amorphous Indium Zinc Oxide Anode. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, J75		99
98	High-quality thin-film passivation by catalyzer-enhanced chemical vapor deposition for organic light-emitting diodes. <i>Applied Physics Letters</i> , 2007 , 90, 013502	3.4	29
97	A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices. <i>Applied Physics Letters</i> , 2007 , 91, 233501	3.4	46
96	Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer. <i>Applied Physics Letters</i> , 2007 , 91, 011113	3.4	133
95	Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes. <i>Applied Physics Letters</i> , 2007 , 90, 223508	3.4	181
94	Transparent, Low Resistance, and Flexible Amorphous ZnO-Doped In[sub 2]O[sub 3] Anode Grown on a PES Substrate. <i>Journal of the Electrochemical Society</i> , 2007 , 154, J81	3.9	45
93	New host materials with high triplet energy level for blue-emitting electrophosphorescent device. <i>Synthetic Metals</i> , 2007 , 157, 743-750	3.6	35

92	A deep red phosphorescent Ir(III) complex for use in polymer light-emitting diodes: role of the arylsilyl substituents. <i>Journal of Organic Chemistry</i> , 2007 , 72, 6241-6	4.2	67
91	Silane- and triazine-containing hole and exciton blocking material for high-efficiency phosphorescent organic light emitting diodes. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3714		71
90	Direct pattering of polymer optical waveguide using liquid state UV-curable polymer. <i>Macromolecular Research</i> , 2006 , 14, 114-116	1.9	7
89	Silicon-containing dendritic tris-cyclometalated Ir(III) complex and its electrophosphorescence in a polymer host. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4706		52
88	Tunable polymer waveguide Bragg filter fabricated by direct patterning of UV-curable polymer. <i>Optics Communications</i> , 2006 , 266, 332-335	2	5
87	Isomer StructureâDptical Property Relationships for Naphthalene-Based Poly(perfluorocyclobutyl ether)s. <i>Macromolecules</i> , 2005 , 38, 8278-8284	5.5	33
86	Structure-property relationship of fluorinated co-poly(arylene ether sulfide)s and co-poly(arylene ether sulfone)s for low-loss and low-birefringence waveguide devices. <i>Journal of Lightwave Technology</i> , 2005 , 23, 364-373	4	25
85	Color Tuning of Cyclometalated Iridium Complexes through Modification of Phenylpyrazole Derivatives and Ancillary Ligand Based on ab Initio Calculations. <i>Organometallics</i> , 2005 , 24, 1578-1585	3.8	131
84	Polymer based blue electrophosphorescent light emitting devices. Current Applied Physics, 2005, 5, 309	-3.163	13
83	White Luminescence from Polymer Thin Films Containing Excited-State Intramolecular Proton-Transfer Dyes. <i>Advanced Materials</i> , 2005 , 17, 2077-2082	24	145
82	Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates. <i>Applied Physics Letters</i> , 2005 , 87, 233504	3.4	13
81	Compact packaging of optical and electronic components for on-board optical interconnects. <i>IEEE Transactions on Advanced Packaging</i> , 2005 , 28, 114-120		16
80	Optical Properties of Perfluorocyclobutane Aryl Ether Polymers for Polymer Photonic Devices. <i>Macromolecules</i> , 2004 , 37, 5724-5731	5.5	37
79	All-optical polymeric interferometeric wavelength converter comprising an excited state intramolecular proton transfer dye. <i>Applied Physics Letters</i> , 2004 , 84, 4221-4223	3.4	5
78	Polymeric multimode waveguide arrays for one- and two-dimensional optical interconnects 2004 , 5517, 141		
77	PLASTIC PHOTONIC CRYSTAL FIBERS DRAWN FROM STACKED CAPILLARIES. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2004 , 13, 519-523	0.8	O
76	Effect of Substitution of Methyl Groups on the Luminescence Performance of IrIII Complexes: Preparation, Structures, Electrochemistry, Photophysical Properties and Their Applications in Organic Light-Emitting Diodes (OLEDs). European Journal of Inorganic Chemistry, 2004 , 2004, 3415-3423	2.3 3	154
75	A novel spiro-functionalized polyfluorene derivative with solubilizing side chains. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1342		57

(2003-2004)

74	Polymer-Based Blue Electrophosphorescent Light-Emitting Diodes Using a Bisorthometalated Ir(III) Complex as the Triplet Emitter. <i>Chemistry of Materials</i> , 2004 , 16, 4642-4646	9.6	80
73	Fabrication of multimode polymeric waveguides and micromirrors using deep X-ray lithography. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 798-800	2.2	14
72	Stacked polymeric multimode waveguide arrays for two-dimensional optical interconnects. <i>Journal of Lightwave Technology</i> , 2004 , 22, 840-844	4	21
71	Zero-birefringence photosensitive polyimides for optical waveguides. <i>Optics Letters</i> , 2004 , 29, 301-3	3	13
70	Macroporous polystyrene-supported quaternary ammonium salt catalysts for the addition of carbon dioxide to glycidyl methacrylate. <i>Reaction Kinetics and Catalysis Letters</i> , 2003 , 79, 233-244		6
69	Synthesis of phenoxymethyl ethylene carbonate using quaternary ammonium salt catalysts grafted onto styrene-vinylbenzylchloride-montmorillonite support. <i>Korean Journal of Chemical Engineering</i> , 2003 , 20, 71-76	2.8	6
68	Effect of Molecular Orientation of Epitaxially Grown Platinum(II) Octaethyl Porphyrin Films on the Performance of Field-Effect Transistors. <i>Advanced Materials</i> , 2003 , 15, 699-702	24	115
67	Polymer electrophosphorescent device: comparison of phosphorescent dye doped and coordinated systems. <i>Optical Materials</i> , 2003 , 21, 119-123	3.3	51
66	Optical and electroluminescent properties of a new green emitting Ir(III) complex. <i>Optical Materials</i> , 2003 , 21, 143-146	3.3	21
65	Hydrolysis and condensation of fluorine containing organosilicon. <i>Optical Materials</i> , 2003 , 21, 445-450	3.3	2
64	All-optical switch and modulator using photochromic dye doped polymer waveguides. <i>Optical Materials</i> , 2003 , 21, 543-548	3.3	44
63	Synthesis and optical properties of fluorinated poly(arylene ether phosphine oxide)s. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 1497-1503	2.5	18
62	Synthesis and characterization of novel polyimides with 2,2-bis[4(4-aminophenoxy)phenyl]phthalein-3?,5?-bis(trifluoromethyl)anilide. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 3361-3374	2.5	55
61	Soluble polymer-bound quaternary ammonium salts for the addition reaction of glycidyl methacrylate with carbon dioxide. <i>Polymers for Advanced Technologies</i> , 2003 , 14, 521-528	3.2	5
60	Fluorinated poly(arylene ether sulfone)s for polymeric optical waveguide devices. <i>Polymer</i> , 2003 , 44, 4189-4195	3.9	37
59	Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes. <i>Journal of Chemical Physics</i> , 2003 , 118, 2853	3.9	202
58	Organic field-effect transistors by a wet-transferring method. <i>Applied Physics Letters</i> , 2003 , 83, 1243-12	24554	36
57	Zero-birefringent polyimide for polymer optical waveguide 2003 ,		3

56	Low-loss, high-bandwidth graded-index plastic optical fiber fabricated by the centrifugal deposition method. <i>Applied Physics Letters</i> , 2003 , 82, 4645-4647	3.4	28
55	Adhesion properties of 12FPMDA-based polyimides containing a trifluoromethylphenyl moiety. <i>Journal of Adhesion Science and Technology</i> , 2003 , 17, 1669-1684	2	3
54	Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 1277-1279	1.4	58
53	Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films. <i>Applied Physics Letters</i> , 2003 , 82, 3823-3825	3.4	52
52	Synthesis and characterization of novel 3,6-di[3?,5?-bis(trifluoromethyl)phenyl]pyromellitic dianhydride for polyimide synthesis. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 4217-4227	2.5	49
51	Charge carrier mobility and photorefractive grating buildup in bipolar organic glasses. <i>Applied Physics Letters</i> , 2002 , 81, 190-192	3.4	5
50	Low-loss polymer optical waveguides using fluorinated poly(arylene ether sulfides and sulfones) 2002 ,		4
49	Photoinduced supramolecular chirality in amorphous azobenzene polymer films. <i>Journal of the American Chemical Society</i> , 2002 , 124, 3504-5	16.4	63
48	Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 1297-1299	2.2	31
47	All-optical Machâldehnder modulator using a photochromic dye-doped polymer. <i>Applied Physics Letters</i> , 2002 , 80, 1710-1712	3.4	47
46	All-optical polymer waveguide devices 2002 , 4905, 108		2
45	Synthesis and properties of novel electroluminescent oligomers containing carbazolylene®vinylene®sulfonylene units for a light-emitting diode. <i>Thin Solid Films</i> , 2001 , 401, 111-1	1 2 .2	8
44	Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties. <i>Polymer</i> , 2001 , 42, 6019-6030	3.9	82
43	Highly efficient polymer phosphorescent light emitting devices. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2001 , 85, 228-231	3.1	20
42	Polymer-Layered Silicate Nanocomposite Light-Emitting Devices. <i>Advanced Materials</i> , 2001 , 13, 211-213	3 24	82
41	Addition of Carbon Dioxide to Phenylglycidyl Ether Using Polymer-Supported Quaternary Ammonium Salt Catalysts. <i>Reaction Kinetics and Catalysis Letters</i> , 2001 , 74, 29-40		2
40	Optimized Oxygen Plasma Etching of Polycarbonate for Low-Loss Optical Waveguide Fabrication. Japanese Journal of Applied Physics, 2001 , 40, 3215-3219	1.4	26
39	Plastic optical amplifier using europium complex 2001 ,		5

[1996-2001]

38	Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability. <i>Journal of Lightwave Technology</i> , 2001 , 19, 872-875	4	54
37	Enhanced quantum efficiency in polymer/layered silicate nanocomposite light-emitting devices. <i>Synthetic Metals</i> , 2001 , 121, 1737-1738	3.6	6
36	Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguide Devices. <i>Macromolecules</i> , 2001 , 34, 7817-7821	5.5	111
35	Electrophosphorescent Light Emitting Devices Using Mixed Ligand Ir(III) Complexes. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 708, 3381		O
34	Singlet and Triplet Energy Transfer in Phosphorescent Dye Doped Polymer Light Emitting Devices. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 708, 3401		2
33	Low-loss Polymer Optical Waveguides with High Thermal Stability. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 708, 481		1
32	Polymer Electroluminescent Devices of Poly(4,4?-triphenyl amine-diylvinylene-alt-4,4?-diphenyl-sulfone-vinylene) (PTASV). <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 349, 383-388		
31	1 🔁 all-optical switch using photochromic-doped waveguides. <i>Electronics Letters</i> , 2000 , 36, 1641	1.1	34
30	Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter. <i>Applied Physics Letters</i> , 2000 , 77, 2280-2282	3.4	231
29	Thermally stable optical waveguide using polycarbonate 1999 , 3799, 333		3
29	Thermally stable optical waveguide using polycarbonate 1999 , 3799, 333 High performance electro-optic polymer waveguide device. <i>Applied Physics Letters</i> , 1997 , 71, 3779-3781	1 3.4	26
			26
28	High performance electro-optic polymer waveguide device. <i>Applied Physics Letters</i> , 1997 , 71, 3779-3781		26
28	High performance electro-optic polymer waveguide device. <i>Applied Physics Letters</i> , 1997 , 71, 3779-3781 Origin of direct current drift in electro-optic polymer modulator. <i>Applied Physics Letters</i> , 1997 , 70, 2796 In situ investigation of degradation in polymeric electroluminescent devices using time-resolved	i- <u>3</u> 798	26
28 27 26	High performance electro-optic polymer waveguide device. <i>Applied Physics Letters</i> , 1997 , 71, 3779-3781 Origin of direct current drift in electro-optic polymer modulator. <i>Applied Physics Letters</i> , 1997 , 70, 2796 In situ investigation of degradation in polymeric electroluminescent devices using time-resolved confocal laser scanning microscope. <i>Applied Physics Letters</i> , 1997 , 70, 3470-3472 Polymeric 2 x 2 electrooptic switch consisting of asymmetric Y junctions and Mach-Zehnder	3·4	26 14 50
28 27 26 25	High performance electro-optic polymer waveguide device. <i>Applied Physics Letters</i> , 1997 , 71, 3779-3781 Origin of direct current drift in electro-optic polymer modulator. <i>Applied Physics Letters</i> , 1997 , 70, 2796 In situ investigation of degradation in polymeric electroluminescent devices using time-resolved confocal laser scanning microscope. <i>Applied Physics Letters</i> , 1997 , 70, 3470-3472 Polymeric 2 x 2 electrooptic switch consisting of asymmetric Y junctions and Mach-Zehnder interferometer. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 761-763	3-4 2.2	26 14 50 27
28 27 26 25 24	High performance electro-optic polymer waveguide device. <i>Applied Physics Letters</i> , 1997 , 71, 3779-3781 Origin of direct current drift in electro-optic polymer modulator. <i>Applied Physics Letters</i> , 1997 , 70, 2796 In situ investigation of degradation in polymeric electroluminescent devices using time-resolved confocal laser scanning microscope. <i>Applied Physics Letters</i> , 1997 , 70, 3470-3472 Polymeric 2 x 2 electrooptic switch consisting of asymmetric Y junctions and Mach-Zehnder interferometer. <i>IEEE Photonics Technology Letters</i> , 1997 , 9, 761-763 End-face scattering loss in integrated-optical waveguides. <i>Applied Optics</i> , 1997 , 36, 9021-4 Improvement of quantum efficiency in polymer electroluminescence devices by inserting pmma	3-4 2.2	26 14 50 27 8

20	TE-TM mode converter in a poled-polymer waveguide. <i>IEEE Journal of Quantum Electronics</i> , 1996 , 32, 1054-1062	2	19
19	Molecular Conformation and Applicaton of Stereoregular PMMA Langmuir-Blodgett Films. <i>ETRI Journal</i> , 1996 , 18, 195-206	1.4	9
18	Photobleaching for the formation of nonlinear optical polymer waveguide devices. <i>Korean Journal of Chemical Engineering</i> , 1996 , 13, 187-193	2.8	3
17	Electroluminescent Behaviour in Multilayer Structure Device Using Poly(P-Phenylenevinylene) Derivative. <i>Molecular Crystals and Liquid Crystals</i> , 1996 , 280, 357-366		4
16	Photostability of Nonlinear Optical Copolymer Under Irradiation with Infrared Light. <i>Molecular Crystals and Liquid Crystals</i> , 1995 , 267, 47-52		
15	Photodegradation of poly(p - phenylenevinylene) by laser light at the peak wavelength of electroluminescence. <i>Applied Physics Letters</i> , 1995 , 67, 3420-3422	3.4	86
14	Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch. <i>Applied Physics Letters</i> , 1995 , 67, 763-765	3.4	16
13	Helical chain configuration of isotactic PMMA LB films observed by atomic force microscopy. <i>Synthetic Metals</i> , 1995 , 71, 2025-2026	3.6	3
12	Electroluminescence from poly(p-phenylenevinylene) with monoalkoxy substituent on the aromatic ring. <i>Synthetic Metals</i> , 1995 , 71, 2167-2169	3.6	12
11	Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides. <i>Applied Physics Letters</i> , 1995 , 67, 1821-1823	3.4	28
10	Design and Fabrication of Nonlinear Optical Polymer Waveguide Devices. <i>Molecular Crystals and Liquid Crystals</i> , 1995 , 267, 353-363		1
9	Electroluminescence Behavior in Polymer Blend of Two Luminescent Polymers. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 413, 103		2
8	Effects of Photobleaching Wavelength on The Resulting Refractive Index Profiles in Nonlinear Optical Polymeric Thin Films. <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 247, 49-58		5
7	Accelerated photobleaching of nonlinear optical polymer for the formation of optical waveguide. <i>Applied Physics Letters</i> , 1994 , 64, 3527-3529	3.4	8
6	Photochemically formed refractive index profiles in nonlinear optical polymer thin films. <i>Applied Physics Letters</i> , 1994 , 64, 3488-3490	3.4	15
5	Transfer Characteristics of Langmuir-Blodgett Films of Stereoregular Poly(Methyl Methacrylates). <i>Molecular Crystals and Liquid Crystals</i> , 1994 , 247, 281-291		4
4	Molecular configuration of isotactic PMMA Langmuir-Blodgett films observed by scanning tunnelling microscopy. <i>Thin Solid Films</i> , 1994 , 244, 700-704	2.2	9
3	A 1 IN therno-optic space switch in a polymeric planar waveguide. <i>Optics Communications</i> , 1994 , 109, 249-252	2	2

Linear and Non-Linear Optical Properties of (2-Cyano-5-Methoxy-1,4-Phenylenevinylene) and Paraphenylenevinylene Copolymers. *Materials Research Society Symposia Proceedings*, **1992**, 277, 229

4

Hydrogen permeation studies of amorphous and crystallized Ni?Ti alloys. *Journal of Non-Crystalline Solids*, **1988**, 101, 187-197

3.9 19