
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4071640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic Lightâ€Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter. Advanced Functional Materials, 2013, 23, 3896-3900.	7.8	495
2	Exciplexâ€Forming Coâ€host for Organic Lightâ€Emitting Diodes with Ultimate Efficiency. Advanced Functional Materials, 2013, 23, 4914-4920.	7.8	421
3	A Fluorescent Organic Lightâ€Emitting Diode with 30% External Quantum Efficiency. Advanced Materials, 2014, 26, 5684-5688.	11.1	397
4	Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nature Communications, 2014, 5, 4769.	5.8	337
5	Highly Efficient Organic Lightâ€Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments. Advanced Materials, 2014, 26, 3844-3847.	11.1	316
6	An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage. Advanced Functional Materials, 2015, 25, 361-366.	7.8	267
7	Origin and Control of Orientation of Phosphorescent and TADF Dyes for Highâ€Efficiency OLEDs. Advanced Materials, 2018, 30, e1705600.	11.1	264
8	Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter. Applied Physics Letters, 2000, 77, 2280-2282.	1.5	251
9	Deep-Blue Phosphorescence from Perfluoro Carbonyl-Substituted Iridium Complexes. Journal of the American Chemical Society, 2013, 135, 14321-14328.	6.6	243
10	Blue Phosphorescent Organic Lightâ€Emitting Diodes Using an Exciplex Forming Coâ€host with the External Quantum Efficiency of Theoretical Limit. Advanced Materials, 2014, 26, 4730-4734.	11.1	241
11	Skyâ€Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer. Advanced Materials, 2016, 28, 4920-4925.	11.1	238
12	Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes. Journal of Chemical Physics, 2003, 118, 2853.	1.2	218
13	Crystal Organic Lightâ€Emitting Diodes with Perfectly Oriented Nonâ€Doped Ptâ€Based Emitting Layer. Advanced Materials, 2016, 28, 2526-2532.	11.1	206
14	Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes. Applied Physics Letters, 2007, 90, 223508.	1.5	204
15	Thermally Activated Delayed Fluorescence from Azasiline Based Intramolecular Charge-Transfer Emitter (DTPDDA) and a Highly Efficient Blue Light Emitting Diode. Chemistry of Materials, 2015, 27, 6675-6681.	3.2	198
16	Low Rollâ€Off and High Efficiency Orange Organic Light Emitting Diodes with Controlled Coâ€Doping of Green and Red Phosphorescent Dopants in an Exciplex Forming Coâ€Host. Advanced Functional Materials, 2013, 23, 4105-4110.	7.8	196
17	Excitation Energy Transfer in Organic Materials: From Fundamentals to Optoelectronic Devices. Macromolecular Rapid Communications, 2009, 30, 1203-1231.	2.0	177
18	Highâ€Efficiency Deepâ€Blue Lightâ€Emitting Diodes Based on Phenylquinoline/Carbazoleâ€Based Compounds. Advanced Functional Materials, 2008, 18, 3922-3930.	7.8	173

#	Article	IF	CITATIONS
19	Highly Efficient Deepâ€Blue OLEDs using a TADF Emitter with a Narrow Emission Spectrum and High Horizontal Emitting Dipole Ratio. Advanced Materials, 2020, 32, e2004083.	11.1	170
20	Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Lightâ€Emitting Diodes. Advanced Materials, 2013, 25, 3571-3577.	11.1	166
21	Efficient, Color Stable White Organic Lightâ€Emitting Diode Based on High Energy Level Yellowishâ€Green Dopants. Advanced Materials, 2008, 20, 1957-1961.	11.1	162
22	White Luminescence from Polymer Thin Films Containing Excited-State Intramolecular Proton-Transfer Dyes. Advanced Materials, 2005, 17, 2077-2082.	11.1	161
23	Effect of Substitution of Methyl Groups on the Luminescence Performance of IrIII Complexes: Preparation, Structures, Electrochemistry, Photophysical Properties and Their Applications in Organic Light-Emitting Diodes (OLEDs). European Journal of Inorganic Chemistry, 2004, 2004, 3415-3423.	1.0	158
24	Langevin and Trapâ€Assisted Recombination in Phosphorescent Organic Light Emitting Diodes. Advanced Functional Materials, 2014, 24, 4681-4688.	7.8	153
25	Highâ€Efficiency Orange and Tandem White Organic Lightâ€Emitting Diodes Using Phosphorescent Dyes with Horizontally Oriented Emitting Dipoles. Advanced Materials, 2014, 26, 5864-5868.	11.1	147
26	Color Tuning of Cyclometalated Iridium Complexes through Modification of Phenylpyrazole Derivatives and Ancillary Ligand Based on ab Initio Calculations. Organometallics, 2005, 24, 1578-1585.	1.1	138
27	Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer. Applied Physics Letters, 2007, 91, 011113.	1.5	138
28	Combined Inter―and Intramolecular Chargeâ€Transfer Processes for Highly Efficient Fluorescent Organic Lightâ€Emitting Diodes with Reduced Triplet Exciton Quenching. Advanced Materials, 2017, 29, 1606448.	11.1	131
29	Boosting Triplet Harvest by Reducing Nonradiative Transition of Exciplex toward Fluorescent Organic Light-Emitting Diodes with 100% Internal Quantum Efficiency. Chemistry of Materials, 2016, 28, 1936-1941.	3.2	129
30	Effect of Molecular Orientation of Epitaxially Grown Platinum(II) Octaethyl Porphyrin Films on the Performance of Field-Effect Transistors. Advanced Materials, 2003, 15, 699-702.	11.1	128
31	Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit. Chemical Communications, 2013, 49, 4664.	2.2	128
32	Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 3277-3281.	4.0	124
33	Iridium Complexes with Cyclometalated 2â€Cycloalkenylâ€Pyridine Ligands as Highly Efficient Emitters for Organic Lightâ€Emitting Diodes. Advanced Materials, 2008, 20, 2003-2007.	11.1	122
34	Pyrene based materials for exceptionally deep blue OLEDs. Journal of Materials Chemistry C, 2014, 2, 9083-9086.	2.7	122
35	Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguide Devices. Macromolecules, 2001, 34, 7817-7821.	2.2	119
36	Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Organic Electronics, 2015, 17, 102-106.	1.4	118

#	Article	IF	CITATIONS
37	Highly Efficient Light-Harvesting System Based on a Phosphorescent Acceptor Coupled with Dendrimer Donors via Singletâ^'Singlet and Tripletâ^'Triplet Energy Transfer. Chemistry of Materials, 2007, 19, 3673-3680.	3.2	109
38	Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Organic Electronics, 2010, 11, 1010-1015.	1.4	109
39	Design of Heteroleptic Ir Complexes with Horizontal Emitting Dipoles for Highly Efficient Organic Light-Emitting Diodes with an External Quantum Efficiency of 38%. Chemistry of Materials, 2016, 28, 7505-7510.	3.2	109
40	Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes. Applied Physics Letters, 2013, 102, .	1.5	106
41	High-Performance Flexible Organic Light-Emitting Diodes Using Amorphous Indium Zinc Oxide Anode. Electrochemical and Solid-State Letters, 2007, 10, J75.	2.2	105
42	Controlling Horizontal Dipole Orientation and Emission Spectrum of Ir Complexes by Chemical Design of Ancillary Ligands for Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1808102.	11,1	105
43	Highâ€Efficiency Sky Blue to Ultradeep Blue Thermally Activated Delayed Fluorescent Diodes Based on <i>Ortho</i> â€Carbazoleâ€Appended Triarylboron Emitters: Above 32% External Quantum Efficiency in Blue Devices. Advanced Optical Materials, 2018, 6, 1800385.	3.6	104
44	The Mechanism of Charge Generation in Chargeâ€Generation Units Composed of pâ€Doped Holeâ€Transporting Layer/HATCN/nâ€Doped Electronâ€Transporting Layers. Advanced Functional Materials, 2012, 22, 855-860.	7.8	101
45	Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes. Applied Physics Letters, 2009, 94, .	1.5	97
46	Extremely Flexible Transparent Conducting Electrodes for Organic Devices. Advanced Energy Materials, 2014, 4, 1300474.	10.2	97
47	Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nature Communications, 2018, 9, 3207.	5.8	96
48	Photodegradation of poly(p â€â€‰phenylenevinylene) by laser light at the peak wavelength of electroluminescence. Applied Physics Letters, 1995, 67, 3420-3422.	1.5	94
49	Highly Improved Quantum Efficiency in Blend Polymer LEDs. Macromolecules, 1996, 29, 165-169.	2.2	94
50	Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties. Polymer, 2001, 42, 6019-6030.	1.8	92
51	Highly efficient deep-blue phosphorescence from heptafluoropropyl-substituted iridium complexes. Chemical Communications, 2015, 51, 58-61.	2.2	91
52	Polymer-Layered Silicate Nanocomposite Light-Emitting Devices. Advanced Materials, 2001, 13, 211-213.	11.1	90
53	Effectiveness of p-dopants in an organic hole transporting material. Applied Physics Letters, 2009, 94, .	1.5	88
54	Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN). ACS Applied Materials & Interfaces, 2016, 8, 9806-9810.	4.0	88

#	Article	IF	CITATIONS
55	Novel Bi-Nuclear Boron Complex with Pyrene Ligand: Red-Light Emitting as well as Electron Transporting Material in Organic Light-Emitting Diodes. Organic Letters, 2010, 12, 1272-1275.	2.4	87
56	In Situ Antibody Detection and Charge Discrimination Using Aqueous Stable Pentacene Transistor Biosensors. Journal of the American Chemical Society, 2011, 133, 2170-2176.	6.6	85
57	Enhanced Light Outâ€Coupling of OLEDs with Low Haze by Inserting Randomly Dispersed Nanopillar Arrays Formed by Lateral Phase Separation of Polymer Blends. Small, 2013, 9, 3858-3863.	5.2	85
58	Strategies for the Molecular Design of Donor–Acceptor-type Fluorescent Emitters for Efficient Deep Blue Organic Light Emitting Diodes. Chemistry of Materials, 2018, 30, 857-863.	3.2	85
59	Polymer-Based Blue Electrophosphorescent Light-Emitting Diodes Using a Bisorthometalated Ir(III) Complex as the Triplet Emitter. Chemistry of Materials, 2004, 16, 4642-4646.	3.2	83
60	Deep-blue phosphorescent iridium complexes with picolinic acid N-oxide as the ancillary ligand for high efficiency organic light-emitting diodes. Organic Electronics, 2010, 11, 564-572.	1.4	83
61	Silane- and triazine-containing hole and exciton blocking material for high-efficiency phosphorescent organic light emitting diodes. Journal of Materials Chemistry, 2007, 17, 3714.	6.7	81
62	Highly flexible, transparent, and low resistance indium zinc oxide–Ag–indium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light light-emitting diodes. Thin Solid Films, 2008, 516, 7881-7885.	0.8	80
63	Highly Efficient, Conventional, Fluorescent Organic Lightâ€Emitting Diodes with Extended Lifetime. Advanced Materials, 2017, 29, 1702159.	11.1	79
64	Highly efficient tandem p-i-n organic light-emitting diodes adopting a low temperature evaporated rhenium oxide interconnecting layer. Applied Physics Letters, 2008, 93, .	1.5	77
65	Influence of Host Molecules on Emitting Dipole Orientation of Phosphorescent Iridium Complexes. Chemistry of Materials, 2015, 27, 2767-2769.	3.2	77
66	Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application. Applied Physics Letters, 2008, 92, 223307.	1.5	76
67	Corrugated organic light emitting diodes for enhanced light extraction. Organic Electronics, 2010, 11, 711-716.	1.4	76
68	Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy. Japanese Journal of Applied Physics, 2003, 42, 1277-1279.	0.8	73
69	Triplet Harvesting by a Conventional Fluorescent Emitter Using Reverse Intersystem Crossing of Host Triplet Exciplex. Advanced Optical Materials, 2015, 3, 895-899.	3.6	73
70	Photoinduced Supramolecular Chirality in Amorphous Azobenzene Polymer Films. Journal of the American Chemical Society, 2002, 124, 3504-3505.	6.6	72
71	External Quantum Efficiency Exceeding 24% with CIE <i>_y</i> Value of 0.08 using a Novel Carbeneâ€Based Iridium Complex in Deepâ€Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2002120.	11.1	72
72	A Deep Red Phosphorescent Ir(III) Complex for Use in Polymer Light-Emitting Diodes:Â Role of the Arylsilyl Substituents. Journal of Organic Chemistry, 2007, 72, 6241-6246.	1.7	70

#	Article	IF	CITATIONS
73	A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection. Organic Electronics, 2011, 12, 1763-1767.	1.4	70
74	Hole Injection/Transport Materials Derived from Heck and Solâ^'Gel Chemistry for Application in Solution-Processed Organic Electronic Devices. Journal of the American Chemical Society, 2011, 133, 1375-1382.	6.6	69
75	Reduction of Collection Efficiency of Charge Carriers with Increasing Cell Size in Polymer Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2011, 21, 343-347.	7.8	69
76	Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability. Journal of Lightwave Technology, 2001, 19, 872-875.	2.7	65
77	Novel binaphthyl-containing bi-nuclear boron complex with low concentration quenching effect for efficient organic light-emitting diodes. Chemical Communications, 2010, 46, 6512.	2.2	64
78	Energy transfer from exciplexes to dopants and its effect on efficiency of organic light-emitting diodes. Journal of Applied Physics, 2011, 110, 124519.	1.1	64
79	High performance top-emitting organic light-emitting diodes with copper iodide-doped hole injection layer. Organic Electronics, 2008, 9, 805-808.	1.4	63
80	A high performance transparent inverted organic light emitting diode with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile as an organic buffer layer. Journal of Materials Chemistry, 2012, 22, 15262.	6.7	63
81	Low-Temperature Organic (CYTOP) Passivation for Improvement of Electric Characteristics and Reliability in IGZO TFTs. IEEE Electron Device Letters, 2012, 33, 381-383.	2.2	63
82	Enhanced efficiency of dye-sensitized solar cells by UV–O3 treatment of TiO2 layer. Current Applied Physics, 2009, 9, 404-408.	1.1	62
83	Phenazasiline/Spiroacridine Donor Combined with Methyl-Substituted Linkers for Efficient Deep Blue Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2019, 11, 7199-7207.	4.0	61
84	A novel spiro-functionalized polyfluorene derivative with solubilizing side chains. Journal of Materials Chemistry, 2004, 14, 1342.	6.7	60
85	Synthesis and characterization of novel polyimides with 2,2-bis[4(4-aminophenoxy)phenyl]phthalein-3?,5?-bis(trifluoromethyl)anilide. Journal of Polymer Science Part A, 2003, 41, 3361-3374.	2.5	59
86	Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films. Applied Physics Letters, 2003, 82, 3823-3825.	1.5	59
87	Harnessing Triplet Excited States by Fluorescent Dopant Utilizing Codoped Phosphorescent Dopant in Exciplex Host for Efficient Fluorescent Organic Light Emitting Diodes. Advanced Optical Materials, 2017, 5, 1600749.	3.6	59
88	Dendritic Ir(iii) complexes functionalized with triphenylsilylphenyl groups: Synthesis, DFT calculation and comprehensive structure-property correlation. Journal of Materials Chemistry, 2009, 19, 8347.	6.7	58
89	Transparent Conducting Indium Zinc Tin Oxide Anode for Highly Efficient Phosphorescent Organic Light Emitting Diodes. Journal of the Electrochemical Society, 2008, 155, J1.	1.3	57
90	Effect of host organic semiconductors on electrical doping. Organic Electronics, 2010, 11, 486-489.	1.4	57

#	Article	IF	CITATIONS
91	An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 37883-37887.	4.0	56
92	Silicon-containing dendritic tris-cyclometalated Ir(iii) complex and its electrophosphorescence in a polymer host. Journal of Materials Chemistry, 2006, 16, 4706.	6.7	55
93	Enhancement of near-infrared absorption with high fill factor in lead phthalocyanine-based organic solar cells. Journal of Materials Chemistry, 2012, 22, 9077.	6.7	55
94	Polymer electrophosphorescent device: comparison of phosphorescent dye doped and coordinated systems. Optical Materials, 2003, 21, 119-123.	1.7	54
95	Effect of Doping Concentration on Microstructure of Conjugated Polymers and Characteristics in Nâ€Type Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 758-767.	7.8	54
96	Unraveling the orientation of phosphors doped in organic semiconducting layers. Nature Communications, 2017, 8, 791.	5.8	53
97	Breaking the Efficiency Limit of Deepâ€Blue Fluorescent OLEDs Based on Anthracene Derivatives. Advanced Materials, 2022, 34, e2100161.	11.1	53
98	In situinvestigation of degradation in polymeric electroluminescent devices using time-resolved confocal laser scanning microscope. Applied Physics Letters, 1997, 70, 3470-3472.	1.5	52
99	The effect of Al electrodes on the nanostructure of poly(3-hexylthiophene): Fullerene solar cell blends during thermal annealing. Organic Electronics, 2009, 10, 1505-1510.	1.4	52
100	Controlling Emitting Dipole Orientation with Methyl Substituents on Main Ligand of Iridium Complexes for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 1191-1196.	3.6	52
101	Highâ€Quality White OLEDs with Comparable Efficiencies to LEDs. Advanced Optical Materials, 2018, 6, 1701349.	3.6	52
102	Synthesis and characterization of novel 3,6-di[3?,5?-bis(trifluoromethyl)phenyl]pyromellitic dianhydride for polyimide synthesis. Journal of Polymer Science Part A, 2002, 40, 4217-4227.	2.5	51
103	Luminescence from oriented emitting dipoles in a birefringent medium. Optics Express, 2015, 23, A279.	1.7	51
104	All-optical Mach–Zehnder modulator using a photochromic dye-doped polymer. Applied Physics Letters, 2002, 80, 1710-1712.	1.5	50
105	Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes. Applied Physics Letters, 2017, 111, .	1.5	50
106	Triplet Harvesting by a Fluorescent Emitter Using a Phosphorescent Sensitizer for Blue Organic-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 26-30.	4.0	50
107	A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices. Applied Physics Letters, 2007, 91, 233501.	1.5	48
108	Highly efficient non-doped deep blue fluorescent emitters with horizontal emitting dipoles using interconnecting units between chromophores. Chemical Communications, 2016, 52, 10956-10959.	2.2	48

#	Article	IF	CITATIONS
109	Highly efficient deep-blue fluorescence OLEDs with excellent charge balance based on phenanthro[9,10- <i>d</i>]oxazole-anthracene derivatives. Journal of Materials Chemistry C, 2020, 8, 11168-11176.	2.7	48
110	All-optical switch and modulator using photochromic dye doped polymer waveguides. Optical Materials, 2003, 21, 543-548.	1.7	47
111	Highly efficient orange organic light-emitting diodes using a novel iridium complex with imide group-containing ligands. Journal of Materials Chemistry, 2009, 19, 8824.	6.7	47
112	Formation of perfect ohmic contact at indium tin oxide/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine interface using ReO3. Scientific Reports, 2014, 4, 3902.	1.6	47
113	Transparent, Low Resistance, and Flexible Amorphous ZnO-Doped In[sub 2]O[sub 3] Anode Grown on a PES Substrate. Journal of the Electrochemical Society, 2007, 154, J81.	1.3	46
114	Real Time Investigation of the Interface between a P3HT:PCBM Layer and an Al Electrode during Thermal Annealing. Macromolecular Rapid Communications, 2009, 30, 1269-1273.	2.0	46
115	Charge Transport in Electrically Doped Amorphous Organic Semiconductors. Macromolecular Rapid Communications, 2015, 36, 984-1000.	2.0	46
116	Azasiline-based thermally activated delayed fluorescence emitters for blue organic light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1027-1032.	2.7	46
117	Interfacial doping for efficient charge injection in organic semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1399-1413.	0.8	45
118	Highly Efficient Deep Blue Phosphorescent OLEDs Based on Tetradentate Pt(II) Complexes Containing Adamantyl Spacer Groups. Advanced Functional Materials, 2021, 31, 2100967.	7.8	45
119	Origin of charge generation efficiency of metal oxide p-dopants in organic semiconductors. Organic Electronics, 2011, 12, 950-954.	1.4	44
120	Crystal Facet Engineering of TiO2 Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO4 Nanodots. Nano-Micro Letters, 2022, 14, 48.	14.4	44
121	A host material containing tetraphenylsilane for phosphorescent OLEDs with high efficiency and operational stability. Organic Electronics, 2008, 9, 452-460.	1.4	42
122	Low-loss and thermally stable TE-mode selective polymer waveguide using photosensitive fluorinated polyimide. IEEE Photonics Technology Letters, 2002, 14, 1297-1299.	1.3	41
123	Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes. Applied Physics Letters, 2007, 90, 163516.	1.5	41
124	Air stable C60 based n-type organic field effect transistor using a perfluoropolymer insulator. Organic Electronics, 2008, 9, 481-486.	1.4	40
125	Rubidium-Carbonate-Doped 4,7-Diphenyl-1,10-phenanthroline Electron Transporting Layer for High-Efficiency p-i-n Organic Light Emitting Diodes. Electrochemical and Solid-State Letters, 2009, 12, J8.	2.2	40
126	Homogeneous dispersion of organic p-dopants in an organic semiconductor as an origin of high charge generation efficiency. Applied Physics Letters, 2011, 98, .	1.5	40

#	Article	IF	CITATIONS
127	Design Strategy of Anthracene-Based Fluorophores toward High-Efficiency Deep Blue Organic Light-Emitting Diodes Utilizing Triplet–Triplet Fusion. ACS Applied Materials & Interfaces, 2020, 12, 15422-15429.	4.0	40
128	Photoconductivity of C ₆₀ as an Origin of Biasâ€Dependent Photocurrent in Organic Photovoltaics. Advanced Functional Materials, 2012, 22, 3089-3094.	7.8	39
129	Relationship between molecular structure and dipole orientation of thermally activated delayed fluorescent emitters. Organic Electronics, 2017, 42, 337-342.	1.4	39
130	Electronic Structure and Emission Process of Excited Charge Transfer States in Solids. Chemistry of Materials, 2018, 30, 5648-5654.	3.2	39
131	1 × 2 all-optical switch using photochromic-doped waveguides. Electronics Letters, 2000, 36, 1641.	0.5	38
132	Fluorinated poly(arylene ether sulfone)s for polymeric optical waveguide devices. Polymer, 2003, 44, 4189-4195.	1.8	38
133	Organic field-effect transistors by a wet-transferring method. Applied Physics Letters, 2003, 83, 1243-1245.	1.5	38
134	Synthesis and characterization of solution-processable highly branched iridium (III) complex cored dendrimer based on tetraphenylsilane dendron for host-free green phosphorescent organic light emitting diodes. Dyes and Pigments, 2011, 90, 139-145.	2.0	38
135	Pyrene end-capped oligothiophene derivatives for organic thin-film transistors and organic solar cells. New Journal of Chemistry, 2012, 36, 1813.	1.4	38
136	Optical Properties of Perfluorocyclobutane Aryl Ether Polymers for Polymer Photonic Devices. Macromolecules, 2004, 37, 5724-5731.	2.2	37
137	A transparent conducting oxide as an efficient middle electrode for flexible organic tandem solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 542-546.	3.0	37
138	Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures. Applied Physics Letters, 2010, 97, 083306.	1.5	37
139	New host materials with high triplet energy level for blue-emitting electrophosphorescent device. Synthetic Metals, 2007, 157, 743-750.	2.1	36
140	Conjugated Triphenylene Polymers for Blue OLED Devices. Macromolecular Rapid Communications, 2009, 30, 1279-1283.	2.0	36
141	Large-area organic solar cells with metal subelectrode on indium tin oxide anode. Applied Physics Letters, 2010, 96, .	1.5	36
142	Determination of the interface energy level alignment of a doped organic hetero-junction using capacitance–voltage measurements. Organic Electronics, 2012, 13, 2346-2351.	1.4	36
143	Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability. Organic Electronics, 2015, 17, 115-120.	1.4	36
144	Self-assembled perpendicular growth of organic nanoneedles via simple vapor-phase deposition: one-step fabrication of a superhydrophobic surface. Chemical Communications, 2008, , 2998.	2.2	35

#	Article	IF	CITATIONS
145	Isomer Structureâ^'Optical Property Relationships for Naphthalene-Based Poly(perfluorocyclobutyl) Tj ETQq1 1	0.784314 i 2.2	rgBŢ_/Overlac
146	Polymeric 2 x 2 electrooptic switch consisting of asymmetric Y junctions and Mach-Zehnder interferometer. IEEE Photonics Technology Letters, 1997, 9, 761-763.	1.3	33
147	Synthesis and characterization of new blue light emitting iridium complexes containing a trimethylsilyl group. Journal of Materials Chemistry, 2012, 22, 22721.	6.7	33
148	Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes. Scientific Reports, 2015, 5, 8685.	1.6	33
149	Finely Tuned Blue Iridium Complexes with Varying Horizontal Emission Dipole Ratios and Quantum Yields for Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 211-220.	3.6	33
150	Electronic and chemical properties of cathode structures using 4,7-diphenyl-1,10-phenanthroline doped with rubidium carbonate as electron injection layers. Journal of Applied Physics, 2009, 105, 113714.	1.1	32
151	Recent progress on exciplex-emitting OLEDs. Journal of Information Display, 2019, 20, 105-121.	2.1	32
152	Wavelength insensitive passive polarization converter fabricated by poled polymer waveguides. Applied Physics Letters, 1995, 67, 1821-1823.	1.5	31
153	Optimized Oxygen Plasma Etching of Polycarbonate for Low-Loss Optical Waveguide Fabrication. Japanese Journal of Applied Physics, 2001, 40, 3215-3219.	0.8	31
154	High-quality thin-film passivation by catalyzer-enhanced chemical vapor deposition for organic light-emitting diodes. Applied Physics Letters, 2007, 90, 013502.	1.5	31
155	Composition-controlled organometal halide perovskite via CH ₃ NH ₃ I pressure in a vacuum co-deposition process. Journal of Materials Chemistry A, 2016, 4, 5663-5668.	5.2	31
156	Dihedral Angle Distribution of Thermally Activated Delayed Fluorescence Molecules in Solids Induces Dual Phosphorescence from Charge-Transfer and Local Triplet States. Chemistry of Materials, 2021, 33, 5618-5630.	3.2	31
157	High performance electro-optic polymer waveguide device. Applied Physics Letters, 1997, 71, 3779-3781.	1.5	30
158	Low-loss, high-bandwidth graded-index plastic optical fiber fabricated by the centrifugal deposition method. Applied Physics Letters, 2003, 82, 4645-4647.	1.5	30
159	Stacked Polymeric Multimode Waveguide Arrays for Two-Dimensional Optical Interconnects. Journal of Lightwave Technology, 2004, 22, 840-844.	2.7	30
160	Flexible OLEDs and organic electronics. Semiconductor Science and Technology, 2011, 26, 030301.	1.0	30
161	Formation of Bulk Heterojunctions by Alternative Thermal Deposition and Its Structure Analysis for High Efficiency Small Molecular Organic Photovoltaics. Advanced Functional Materials, 2011, 21, 2067-2071.	7.8	30
162	High performance inkjet printed phosphorescent organic light emitting diodes based on small molecules commonly used in vacuum processes. Thin Solid Films, 2012, 520, 6954-6958.	0.8	30

#	Article	IF	CITATIONS
163	High efficiency and non-color-changing orange organic light emitting diodes with red and green emitting layers. Organic Electronics, 2013, 14, 1856-1860.	1.4	30
164	Quantitative Analysis of the Efficiency of OLEDs. ACS Applied Materials & Interfaces, 2016, 8, 33010-33018.	4.0	30
165	Poling-induced waveguide polarizers in electrooptic polymers. IEEE Photonics Technology Letters, 1996, 8, 375-377.	1.3	29
166	Effect of <i>ortho</i> -biphenyl substitution on the excited state dynamics of a multi-carbazole TADF molecule. Journal of Materials Chemistry C, 2020, 8, 12075-12084.	2.7	29
167	Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media. Biosensors and Bioelectronics, 2011, 26, 4217-4221.	5.3	28
168	Synthesis and characterization of a new iridium(III) complex with bulky trimethylsilylxylene and applications for efficient yellow-green emitting phosphorescent organic light emitting diodes. Dyes and Pigments, 2012, 92, 603-609.	2.0	28
169	An organic p–n junction as an efficient and cathode independent electron injection layer for flexible inverted organic light emitting diodes. Organic Electronics, 2012, 13, 545-549.	1.4	28
170	Dependence of Pt(II) based phosphorescent emitter orientation on host molecule orientation in doped organic thin films. Organic Electronics, 2017, 45, 279-284.	1.4	28
171	Cul interlayers in lead phthalocyanine thin films enhance near-infrared light absorption. Applied Physics Letters, 2012, 100, 263303.	1.5	27
172	N-Type Molecular Doping in Organic Semiconductors: Formation and Dissociation Efficiencies of a Charge Transfer Complex. Journal of Physical Chemistry C, 2016, 120, 9475-9481.	1.5	27
173	Hydrogen permeation studies of amorphous and crystallized Niî—,Ti alloys. Journal of Non-Crystalline Solids, 1988, 101, 187-197.	1.5	26
174	Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility. ACS Applied Materials & Interfaces, 2016, 8, 1214-1219.	4.0	26
175	Electronic biosensing with flexible organic transistor devices. Flexible and Printed Electronics, 2018, 3, 034003.	1.5	26
176	Structure-property relationship of fluorinated co-poly(arylene ether sulfide)s and co-poly(arylene) Tj ETQq0 0 0 rg Technology, 2005, 23, 364-373.	gBT /Overl 2.7	ock 10 Tf 50 2 25
177	High-performance organic semiconductors for thin-film transistors based on 2,6-bis(2-thienylvinyl)anthracene. Journal of Materials Chemistry, 2008, 18, 2234.	6.7	25
178	High efficiency p-i-n top-emitting organic light-emitting diodes with a nearly Lambertian emission pattern. Journal of Applied Physics, 2009, 106, .	1.1	25
179	A high performance semitransparent organic photodetector with green color selectivity. Applied Physics Letters, 2014, 105, .	1.5	25
180	Vacuum nano-hole array embedded organic light emitting diodes. Nanoscale, 2014, 6, 2642-2648.	2.8	25

#	Article	IF	CITATIONS
181	Control of Crystallinity in PbPc:C ₆₀ Blend Film and Application for Inverted Near-Infrared Organic Photodetector. ACS Applied Materials & amp; Interfaces, 2018, 10, 25614-25620.	4.0	25
182	A spiro-silafluorene–phenazasiline donor-based efficient blue thermally activated delayed fluorescence emitter and its host-dependent device characteristics. Journal of Materials Chemistry C, 2019, 7, 4191-4198.	2.7	25
183	Comprehensive Model of the Degradation of Organic Light-Emitting Diodes and Application for Efficient, Stable Blue Phosphorescent Devices with Reduced Influence of Polarons. Physical Review Applied, 2020, 14, .	1.5	25
184	Molecular library of OLED host materials—Evaluating the multiscale simulation workflow. Chemical Physics Reviews, 2021, 2, .	2.6	24
185	Fabrication of Multimode Polymeric Waveguides and Micromirrors Using Deep X-Ray Lithography. IEEE Photonics Technology Letters, 2004, 16, 798-800.	1.3	23
186	Compact packaging of optical and electronic components for on-board optical interconnects. IEEE Transactions on Advanced Packaging, 2005, 28, 114-120.	1.7	23
187	High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency. Organic Electronics, 2012, 13, 826-832.	1.4	23
188	Optical and electroluminescent properties of a new green emitting Ir(III) complex. Optical Materials, 2003, 21, 143-146.	1.7	22
189	Synthetic Strategy for Preserving Sky-Blue Electrophosphorescence in Square-Planar Pt(II) Complexes. ACS Applied Electronic Materials, 2020, 2, 604-617.	2.0	22
190	TE-TM mode converter in a poled-polymer waveguide. IEEE Journal of Quantum Electronics, 1996, 32, 1054-1062.	1.0	21
191	Origin of direct current drift in electro-optic polymer modulator. Applied Physics Letters, 1997, 70, 2796-2798.	1.5	21
192	Highly efficient polymer phosphorescent light emitting devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 228-231.	1.7	21
193	Synthesis and optical properties of fluorinated poly(arylene ether phosphine oxide)s. Journal of Polymer Science Part A, 2003, 41, 1497-1503.	2.5	21
194	Initial Growth Mode, Nanostructure, and Molecular Stacking of a ZnPc:C60 Bulk Heterojunction. Advanced Functional Materials, 2012, 22, 4244-4248.	7.8	21
195	Doping-concentration-dependent hole mobility in a ReO ₃ doped organic semiconductor of 4,4′,4″-tris(<i>N</i> -(2-naphthyl)- <i>N</i> -phenyl-amino)-triphenylamine. Applied Physics Letters, 2013, 102, 183301.	1.5	21
196	Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle. Applied Physics Letters, 2014, 104, 073301.	1.5	21
197	Highly Efficient Vacuum-Processed Organic Solar Cells Containing Thieno[3,2- <i>b</i>]thiophene-thiazole. Journal of Physical Chemistry C, 2014, 118, 11559-11565.	1.5	21
198	Grazing Incidence Small-Angle X-ray Scattering Analysis of Initial Growth of Planar Organic Molecules Affected by Substrate Surface Energy. Journal of Physical Chemistry Letters, 2011, 2, 1710-1714.	2.1	20

#	Article	IF	CITATIONS
199	Outcoupling efficiency of organic light emitting diodes employing graphene as the anode. Organic Electronics, 2012, 13, 1081-1085.	1.4	20
200	Electron injection and transport for high-performance inverted organic light-emitting diodes. Journal of Information Display, 2013, 14, 39-48.	2.1	20
201	Routes for Efficiency Enhancement in Fluorescent TADF Exciplex Host OLEDs Gained from an Electroâ€Optical Device Model. Advanced Electronic Materials, 2020, 6, 1900804.	2.6	20
202	Postphotobleaching method for the control of coupling constant in an electroâ€optic polymer directional coupler switch. Applied Physics Letters, 1995, 67, 763-765.	1.5	19
203	Thickness dependence of PL efficiency of organic thin films. Chemical Physics, 2009, 355, 25-30.	0.9	19
204	Surface dependent thermal evolution of the nanostructures in ultra-thin copper(ii) phthalocyanine films. Journal of Materials Chemistry, 2012, 22, 8881.	6.7	19
205	High performance organic planar heterojunction solar cells by controlling the molecular orientation. Current Applied Physics, 2013, 13, 7-11.	1.1	19
206	Multilayer Epitaxial Growth of Lead Phthalocyanine and C ₇₀ Using CuBr as a Templating Layer for Enhancing the Efficiency of Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2014, 6, 4286-4291.	4.0	19
207	Rapid Patterning of Singleâ€Wall Carbon Nanotubes by Interlayer Lithography. Small, 2010, 6, 2530-2534.	5.2	18
208	Solution-processed photonic crystals to enhance the light outcoupling efficiency of organic light-emitting diodes. Applied Optics, 2010, 49, 4024.	2.1	18
209	Transparent Ti-In-Sn-O multicomponent anodes for highly efficient phosphorescent organic light emitting diodes. Journal of Applied Physics, 2012, 112, 023513.	1.1	18
210	Unveiling the Role of Dopant Polarity in the Recombination and Performance of Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1800001.	7.8	18
211	Inverted near-infrared organic photodetector with oriented lead (II) phthalocyanine molecules via substrate heating. Organic Electronics, 2018, 61, 164-169.	1.4	18
212	Photochemically formed refractive index profiles in nonlinear optical polymer thin films. Applied Physics Letters, 1994, 64, 3488-3490.	1.5	17
213	Planarization of nanopatterned substrates using solution process to enhance outcoupling efficiency of organic light emitting diodes. Current Applied Physics, 2010, 10, e139-e142.	1.1	17
214	Invited paper: Nanostructures of a mixed donor and acceptor layer in organic photovoltaics. Electronic Materials Letters, 2011, 7, 93-104.	1.0	17
215	New sky-blue and bluish–green emitting Ir(III) complexes containing an azoline ancillary ligand for highly efficient PhOLEDs. Dyes and Pigments, 2016, 131, 60-68.	2.0	17
216	Synthesis and characterization of perfluorinated phenyl-substituted Ir(<scp>iii</scp>) complex for pure green emission. Journal of Materials Chemistry C, 2017, 5, 3107-3111.	2.7	17

#	Article	IF	CITATIONS
217	Optical Analysis of Power Distribution in Top-Emitting Organic Light Emitting Diodes Integrated with Nanolens Array Using Finite Difference Time Domain. ACS Applied Materials & Interfaces, 2018, 10, 18942-18947.	4.0	17
218	Enhanced Triplet–Triplet Annihilation of Blue Fluorescent Organic Light-Emitting Diodes by Generating Excitons in Trapped Charge-Free Regions. ACS Applied Materials & Interfaces, 2019, 11, 48121-48127.	4.0	17
219	Blue thermally activated delayed fluorescence emitter using modulated triazines as electron acceptors. Dyes and Pigments, 2020, 172, 107864.	2.0	17
220	A Broadband Multiplex Living Solar Cell. Nano Letters, 2020, 20, 4286-4291.	4.5	17
221	Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron–hole balanced spacers. Journal Physics D: Applied Physics, 2010, 43, 405102.	1.3	16
222	Rhenium oxide as an efficient p-dopant to overcome S-shaped current density-voltage curves in organic photovoltaics with a deep highest occupied molecular orbital level donor layer. Applied Physics Letters, 2012, 101, 153303.	1.5	16
223	Near infra-red transparent Mo-doped In2O3 by hetero targets sputtering for phosphorescent organic light emitting diodes. Organic Electronics, 2013, 14, 926-933.	1.4	16
224	Vacuum-depositable thiophene- and benzothiadiazole-based donor materials for organic solar cells. New Journal of Chemistry, 2015, 39, 9591-9595.	1.4	16
225	Crystallization-assisted nano-lens array fabrication for highly efficient and color stable organic light emitting diodes. Nanoscale, 2017, 9, 230-236.	2.8	16
226	Densely cross-linked polysiloxane dielectric for organic thin-film transistors with enhanced electrical stability. Journal of Materials Chemistry C, 2019, 7, 5821-5829.	2.7	16
227	Zero-birefringence photosensitive polyimides for optical waveguides. Optics Letters, 2004, 29, 301.	1.7	15
228	Transparent indium oxide films doped with high Lewis acid strength Ge dopant for phosphorescent organic light-emitting diodes. Journal Physics D: Applied Physics, 2012, 45, 325102.	1.3	15
229	Enhanced light extraction efficiency in organic light emitting diodes using a tetragonal photonic crystal with hydrogen silsesquioxane. Optics Letters, 2014, 39, 5901.	1.7	15
230	Highly Efficient Tandem White OLED Using a Hollow Structure. Advanced Materials Interfaces, 2020, 7, 1901509.	1.9	15
231	Diffusion Mechanism of Exciplexes in Organic Optoelectronics. Physical Review Applied, 2020, 13, .	1.5	15
232	Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates. Applied Physics Letters, 2005, 87, 233504.	1.5	14
233	High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer. Applied Physics Letters, 2012, 101, .	1.5	14
234	Dual pattern for enhancing light extraction efficiency of white organic light-emitting diodes. Organic Electronics, 2018, 57, 201-205.	1.4	14

#	Article	IF	CITATIONS
235	Molecular configuration of isotactic PMMA Langmuir-Blodgett films observed by scanning tunnelling microscopy. Thin Solid Films, 1994, 244, 700-704.	0.8	13
236	Electroluminescence from poly(p-phenylenevinylene) with monoalkoxy substituent on the aromatic ring. Synthetic Metals, 1995, 71, 2167-2169.	2.1	13
237	Polymer based blue electrophosphorescent light emitting devices. Current Applied Physics, 2005, 5, 309-313.	1.1	13
238	Near-IR electromer emission from new ambipolar carbazole containing phosphorescent dendrimer based organic light emitting diode. Synthetic Metals, 2010, 160, 1994-1999.	2.1	13
239	An efficient interconnection unit composed of electron-transporting layer/metal/p-doped hole-transporting layer for tandem organic photovoltaics. Applied Physics Letters, 2013, 102, 203903.	1.5	13
240	Synthesis and characterization of highly efficient blue Ir(III) complexes by tailoring β-diketonate ancillary ligand for highly efficient PhOLED applications. Organic Electronics, 2016, 39, 91-99.	1.4	13
241	Direct formation of nano-pillar arrays by phase separation of polymer blend for the enhanced out-coupling of organic light emitting diodes with low pixel blurring. Optics Express, 2016, 24, A488.	1.7	13
242	Random organic nano-textured microstructures formed by photoexcitation for light extraction of blue OLEDs. Organic Electronics, 2020, 87, 105892.	1.4	13
243	TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix. Journal of Physical Chemistry A, 2021, 125, 1234-1242.	1.1	13
244	Molecular Conformation and Application of Stereoregular PMMA Langmuir-Blodgett Films. ETRI Journal, 1996, 18, 195-206.	1.2	12
245	Microcavity tandem solar cells with a short circuit current higher than single cells. Solar Energy Materials and Solar Cells, 2013, 114, 59-64.	3.0	12
246	A simple method to measure intermolecular charge-transfer absorption of organic films. Organic Electronics, 2018, 62, 511-515.	1.4	12
247	Effect of a π-linker of push–pull D–π–A donor molecules on the performance of organic photodetectors. Journal of Materials Chemistry C, 2020, 8, 11145-11152.	2.7	12
248	Molecular alignment and nanostructure of 1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (HATCN) thin films on organic surfaces. Journal of Materials Chemistry C, 2013, 1, 1260-1264.	2.7	11
249	Optical analysis of organic photovoltaic cells incorporating graphene as a transparent electrode. Organic Electronics, 2013, 14, 1496-1503.	1.4	11
250	The epitaxial growth of lead phthalocyanine on copper halogen compounds as the origin of templating effects. Journal of Materials Chemistry A, 2014, 2, 8730-8735.	5.2	11
251	Cross-linked poly(hydroxy imide) gate-insulating materials for low-temperature processing of organic thin-film transistors. Journal of Materials Chemistry C, 2018, 6, 13359-13366.	2.7	11
252	Linear-shaped thermally activated delayed fluorescence emitter using 1,5-naphthyridine as an electron acceptor for efficient light extraction. Organic Electronics, 2020, 78, 105600.	1.4	11

#	Article	IF	CITATIONS
253	Control of the horizontal dipole ratio and emission color of deep blue tetradentate Pt(II) complexes using aliphatic spacer groups. Chemical Engineering Journal, 2022, 450, 137836.	6.6	11
254	End-face scattering loss in integrated-optical waveguides. Applied Optics, 1997, 36, 9021.	2.1	10
255	Efficient Vacuumâ€Deposited Tandem Organic Solar Cells with Fill Factors Higher Than Singleâ€Junction Subcells. Advanced Energy Materials, 2015, 5, 1500228.	10.2	10
256	Effect of the π-linker on the performance of organic photovoltaic devices based on push–pull D–π–A molecules. New Journal of Chemistry, 2018, 42, 11458-11464.	1.4	10
257	Emitting dipole orientation and molecular orientation of homoleptic Ir(III) complexes. Organic Electronics, 2020, 82, 105715.	1.4	10
258	Accelerated photobleaching of nonlinear optical polymer for the formation of optical waveguide. Applied Physics Letters, 1994, 64, 3527-3529.	1.5	9
259	Direct pattering of polymer optical waveguide using liquid state UV-curable polymer. Macromolecular Research, 2006, 14, 114-116.	1.0	9
260	Highly efficient inverted top emitting organic light emitting diodes using a horizontally oriented green phosphorescent emitter. Organic Electronics, 2014, 15, 2715-2718.	1.4	9
261	Highly efficient bluish green phosphorescent organic light-emitting diodes based on heteroleptic iridium(III) complexes with phenylpyridine main skeleton. Organic Electronics, 2014, 15, 1687-1694.	1.4	9
262	Synthesis and properties of novel electroluminescent oligomers containing carbazolyleneĀ¢Â€Â"vinylene–sulfonylene units for a light-emitting diode. Thin Solid Films, 2001, 401, 11	1-1 <mark>9:8</mark> .	8
263	Characteristics of Ni-Doped IZO Layers Grown on IZO Anode for Enhancing Hole Injection in OLEDs. Journal of the Electrochemical Society, 2008, 155, J340.	1.3	8
264	Synthesis and device performance of new efficient blue copolymers containing biphenylenevinylene and triphenyldiamine. Macromolecular Research, 2011, 19, 629-634.	1.0	8
265	Enhanced light extraction efficiency in organic light-emitting diode with randomly dispersed nanopattern. Optics Letters, 2015, 40, 5838.	1.7	8
266	Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules. AIP Advances, 2016, 6, .	0.6	8
267	Enhanced quantum efficiency in polymer/layered silicate nanocomposite light-emitting devices. Synthetic Metals, 2001, 121, 1737-1738.	2.1	7
268	Soluble polymer-bound quaternary ammonium salts for the addition reaction of glycidyl methacrylate with carbon dioxide. Polymers for Advanced Technologies, 2003, 14, 521-528.	1.6	7
269	Organic thin-film transistors based on 2,6-bis(2-arylvinyl)anthracene: high-performance organic semiconductors. New Journal of Chemistry, 2008, 32, 2006.	1.4	7
270	Correlation of photoluminescent quantum efficiency and device characteristics for the soluble electrophosphorescent light emitter with interfacial layers. Journal of Applied Physics, 2008, 104, 024511.	1.1	7

#	Article	IF	CITATIONS
271	Improvement of quantum efficiency in polymer electroluminescence devices by inserting pmma langmuir-blodgett films. Synthetic Metals, 1997, 85, 1191-1192.	2.1	6
272	<title>Thermally stable optical waveguide using polycarbonate</title> . , 1999, 3799, 333.		6
273	Plastic optical amplifier using europium complex. , 2001, , .		6
274	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 79, 233-244.	0.6	6
275	Synthesis of phenoxymethyl ethylene carbonate using quaternary ammonium salt catalysts grafted onto styrene-vinylbenzylchloride-montmorillonite support. Korean Journal of Chemical Engineering, 2003, 20, 71-76.	1.2	6
276	All-optical polymeric interferometeric wavelength converter comprising an excited state intramolecular proton transfer dye. Applied Physics Letters, 2004, 84, 4221-4223.	1.5	6
277	Synthesis and Light-Emitting Properties of New Polyimides Containing Ethynylene Units in the Main Chain. Macromolecular Materials and Engineering, 2007, 292, 844-854.	1.7	6
278	Estimation of the mean emission zone in phosphorescent organic light-emitting diodes with a thin emitting layer. Optics Express, 2010, 18, 16715.	1.7	6
279	Small molecular host based on carbazole and m-terphenyl derivatives for efficient solution processed organic light-emitting diodes. Synthetic Metals, 2012, 162, 303-308.	2.1	6
280	Deepâ€Blue Phosphorescent Emitters with Phosphoryl Groups for Organic Lightâ€Emitting Diodes by Solution Processes. Israel Journal of Chemistry, 2014, 54, 993-998.	1.0	6
281	Vacuum processable donor material based on dithieno[3,2-b:2′,3′-d]thiophene and pyrene for efficient organic solar cells. RSC Advances, 2014, 4, 24453-24457.	1.7	6
282	Effect of different p-dopants in an interconnection unit on the performance of tandem organic solar cells. Organic Electronics, 2014, 15, 1805-1809.	1.4	6
283	Phosphorescent OLEDs: Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer (Adv. Mater. 24/2016). Advanced Materials, 2016, 28, 4758-4758.	11.1	6
284	Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures. Optical Materials, 2017, 72, 828-832.	1.7	6
285	Analysis of the charge transfer and separation in electrically doped organic semiconductors by electron spin resonance spectroscopy. Organic Electronics, 2019, 67, 242-246.	1.4	6
286	Linear and Non-Linear Optical Properties of (2-Cyano-5-Methoxy-1,4-Phenylenevinylene) and Paraphenylenevinylene Copolymers. Materials Research Society Symposia Proceedings, 1992, 277, 229.	0.1	5
287	Effects of Photobleaching Wavelength on The Resulting Refractive Index Profiles in Nonlinear Optical Polymeric Thin Films. Molecular Crystals and Liquid Crystals, 1994, 247, 49-58.	0.3	5
288	Charge carrier mobility and photorefractive grating buildup in bipolar organic glasses. Applied Physics Letters, 2002, 81, 190-192.	1.5	5

#	Article	IF	CITATIONS
289	Low-loss polymer optical waveguides using fluorinated poly(arylene ether sulfides and sulfones). , 2002, , .		5
290	Tunable polymer waveguide Bragg filter fabricated by direct patterning of UV-curable polymer. Optics Communications, 2006, 266, 332-335.	1.0	5
291	Synthesis and lightâ€emitting properties of a novel Ï€â€conjugated poly[di(<i>p</i> â€phenyleneethynylene)â€ <i>alt</i> ―(<i>p</i> â€phenylenecyanovinylene)] containing <i>n</i> â€octyloxy side branches. Journal of Applied Polymer Science, 2008, 108, 914-922.	1.3	5
292	Synthesis and characterization of novel poly(arylenevinylene) derivative. Journal of Applied Polymer Science, 2008, 110, 2009-2015.	1.3	5
293	Correlation of the electronic structure of an interconnection unit with the device performance of tandem organic solar cells. Journal of Materials Chemistry A, 2014, 2, 5450-5454.	5.2	5
294	Air void optical scattering structure for high-brightness organic light emitting diodes. Ceramics International, 2017, 43, S455-S459.	2.3	5
295	Impacts of Minority Charge Carrier Injection on the Negative Capacitance, Steadyâ€State Current, and Transient Current of a Singleâ€Layer Organic Semiconductor Device. Advanced Electronic Materials, 2020, 6, 2000622.	2.6	5
296	Transfer Characteristics of Langmuir-Blodgett Films of Stereoregular Poly(Methyl Methacrylates). Molecular Crystals and Liquid Crystals, 1994, 247, 281-291.	0.3	4
297	Electroluminescent Behaviour in Multilayer Structure Device Using Poly(P-Phenylenevinylene) Derivative. Molecular Crystals and Liquid Crystals, 1996, 280, 357-366.	0.3	4
298	PLASTIC PHOTONIC CRYSTAL FIBERS DRAWN FROM STACKED CAPILLARIES. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 519-523.	1.1	4
299	Electroluminescence from monolayer of quantum dots formed by multiple dipâ€coating processes. Physica Status Solidi (B): Basic Research, 2009, 246, 803-807.	0.7	4
300	Flexible Electronics: Extremely Flexible Transparent Conducting Electrodes for Organic Devices (Adv.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
301	Growth mechanism of CH ₃ NH ₃ I in a vacuum processed perovskite. Nanoscale Advances, 2020, 2, 3906-3911.	2.2	4
302	The effect of the electron-donor ability on the OLED efficiency of twisted donor-acceptor type emitters. Organic Electronics, 2021, 95, 106187.	1.4	4
303	Helical chain configuration of isotactic PMMA LB films observed by atomic force microscopy. Synthetic Metals, 1995, 71, 2025-2026.	2.1	3
304	Photobleaching for the formation of nonlinear optical polymer waveguide devices. Korean Journal of Chemical Engineering, 1996, 13, 187-193.	1.2	3
305	Zero-birefringent polyimide for polymer optical waveguide. , 2003, , .		3
306	Adhesion properties of 12FPMDA-based polyimides containing a trifluoromethylphenyl moiety. Journal of Adhesion Science and Technology, 2003, 17, 1669-1684.	1.4	3

#	Article	IF	CITATIONS
307	Investigations of electron-injection mechanisms and interfacial chemical reactions of Bphen doped with rubidium carbonate in OLEDs. , 2008, , .		3
308	Enhancement of the Fill Factor through an Increase of the Crystallinity in Fullerene-Based Small-Molecule Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2015, 7, 9134-9138.	4.0	3
309	A 1 × N therno-optic space switch in a polymeric planar waveguide. Optics Communications, 1994, 109, 249-252.	1.0	2
310	ElectroluminesCence Behavior in Polymer Blend of Two Luminescent Polymers. Materials Research Society Symposia Proceedings, 1995, 413, 103.	0.1	2
311	Design and Fabrication of Nonlinear Optical Polymer Waveguide Devices. Molecular Crystals and Liquid Crystals, 1995, 267, 353-363.	0.3	2
312	Singlet and Triplet Energy Transfer in Phosphorescent Dye Doped Polymer Light Emitting Devices. Materials Research Society Symposia Proceedings, 2001, 708, 3401.	0.1	2
313	Low-loss Polymer Optical Waveguides with High Thermal Stability. Materials Research Society Symposia Proceedings, 2001, 708, 481.	0.1	2
314	Title is missing!. Reaction Kinetics and Catalysis Letters, 2001, 74, 29-40.	0.6	2
315	All-optical polymer waveguide devices. , 2002, 4905, 108.		2
316	Hydrolysis and condensation of fluorine containing organosilicon. Optical Materials, 2003, 21, 445-450.	1.7	2
317	Pâ€161: Effectiveness of <i>p</i> â€Dopants in an Organic Hole Transporting Material. Digest of Technical Papers SID International Symposium, 2009, 40, 1719-1721.	0.1	2
318	35.1: <i>Invited Paper</i> : Electrical Doping for High Performance Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2009, 40, 491-494.	0.1	2
319	CISAXS studies of initial growth mode and nanostructure of bulk heterojunction layers in planar type metal pthanlocyanine molecules. , 2012, , .		2
320	The mechanism of charge generation in charge generation units containing HATCN for high-luminance tandem OLED display. Proceedings of SPIE, 2012, , .	0.8	2
321	Blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting material. Proceedings of SPIE, 2016, , .	0.8	2
322	Hole mobility in various transition-metal-oxides doped organic semiconductor films. Applied Physics Letters, 2017, 110, .	1.5	2
323	Uniform Insulating Properties of Low-Temperature Curable Gate Dielectric for Organic Thin-Film Transistor Arrays on Plastic Substrate. IEEE Electron Device Letters, 2018, , 1-1.	2.2	2
324	12â€3: A Highly Massâ€producible Nanoâ€lens Array Technology for Optically Efficient Fullâ€color Organic Light Emitting Diode Display Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 149-152.	0.1	2

#	Article	IF	CITATIONS
325	Random Nanowire Arrays Spontaneously Formed via Vacuum Deposition for Enhancing Light Extraction from Inverted Top-Emitting Organic Light-Emitting Diodes. Fibers and Polymers, 2021, 22, 1511-1517.	1.1	2
326	Integrated-optical M x N (M=4, N=8) space switch consisting of phased array optical beam-steering devices in electro-optic polymer. , 1997, 3006, 338.		1
327	Electrophosphorescent Light Emitting Devices Using Mixed Ligand Ir(III) Complexes. Materials Research Society Symposia Proceedings, 2001, 708, 3381.	0.1	1
328	Polymeric multimode waveguide arrays for one- and two-dimensional optical interconnects. , 2004, 5517, 141.		1
329	All-solution-processed Organic Thin-film Transistors using Inkjet-printed Silver Electrodes. ECS Transactions, 2008, 16, 225-230.	0.3	1
330	Enhanced sensitivity to near-infrared with high fill factor in small molecular organic solar cells. , 2012, , .		1
331	An organic p-n junction for electrode-independent electron injection layer in organic light emitting diodes. , 2012, , .		1
332	Organic Leds: Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency (Adv. Funct. Mater. 39/2013). Advanced Functional Materials, 2013, 23, 4913-4913.	7.8	1
333	Light-Emitting-Diodes: High-Efficiency Orange and Tandem White Organic Light-Emitting Diodes Using Phosphorescent Dyes with Horizontally Oriented Emitting Dipoles (Adv. Mater. 33/2014). Advanced Materials, 2014, 26, 5863-5863.	11.1	1
334	Organic Electronics: An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage (Adv. Funct. Mater. 3/2015). Advanced Functional Materials, 2015, 25, 342-342.	7.8	1
335	Triplet Harvesting: Triplet Harvesting by a Conventional Fluorescent Emitter Using Reverse Intersystem Crossing of Host Triplet Exciplex (Advanced Optical Materials 7/2015). Advanced Optical Materials, 2015, 3, 846-846.	3.6	1
336	Unraveling the origin of the orientation of Ir complexes doped in organic semiconducting layers. , 2017, , .		1
337	A Fluorescent Organic Light Emitting Diode with 100% Internal Quantum Efficiency. , 2014, , .		1
338	Simple method to extract extinction coefficients of films with the resolution of 10 ^{â^'5} using just transmission data and application to intermolecular charge-transfer absorption in an exciplex-forming organic film. Optics Express, 2020, 28, 11892.	1.7	1
339	Photostability of Nonlinear Optical Copolymer Under Irradiation with Infrared Light. Molecular Crystals and Liquid Crystals, 1995, 267, 47-52.	0.3	0
340	Polymer Electroluminescent Devices of Poly(4,4′-triphenyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Td (ami 2000, 349, 383-388.	ne-diylviny 0.3	ylene-alt-4,4â [:] O
341	High-bandwidth graded-index plastic optical fiber fabricated by centrifugal deposition method. , 2003, ,		0
342	Fabrication of multimode polymeric waveguides and micromirrors using UV and X-ray lithography. ,		0

342 2003, , .

#	Article	IF	CITATIONS
343	Etch-less UV-NIL process for patterning photonic crystal structure onto OLED substrate. Proceedings of SPIE, 2008, , .	0.8	0
344	Electrical doping for high performance organic light emitting diodes. , 2009, , .		0
345	Magnetic field induced grain growth of perylene polycrystalline films. Organic Electronics, 2010, 11, 1723-1728.	1.4	0
346	Synthesis and Characterization of Bis-Orthometalated Ir(III) Complex Consisting of Non-Carbon-Coordinating Ligand. Molecular Crystals and Liquid Crystals, 2010, 531, 40/[340]-46/[346].	0.4	0
347	Effects of Symmetry of Ir (III) Complex on the Photophysical Properties and Device Performances. Molecular Crystals and Liquid Crystals, 2011, 550, 284-293.	0.4	0
348	Thermal and substrate surface energy effects on nanostructure and surface morphology in the ultra-thin copper phthalocyanine film. Proceedings of SPIE, 2012, , .	0.8	0
349	Correction to "Grazing Incidence Small-Angle X-ray Scattering Analysis of Initial Growth of Planar Organic Molecules Affected by Substrate Surface Energy― Journal of Physical Chemistry Letters, 2012, 3, 1853-1853.	2.1	0
350	Inverted OLEDs for flexible displays. Proceedings of SPIE, 2012, , .	0.8	0
351	Organic Light-Emitting Diodes: The Mechanism of Charge Generation in Charge-Generation Units Composed of p-Doped Hole-Transporting Layer/HATCN/n-Doped Electron-Transporting Layers (Adv.) Tj ETQq1 1 ().7 86314	rgର୍ତ୍ତୀ /Overloc
352	Low roll-off and high efficiency orange OLEDs using green and red dopants in an exciplex forming co-host. , 2013, , .		0
353	Enhanced light out-coupling from surface plasmonic loss minimized transparent organic light-emitting diodes. , 2013, , .		0
354	Degradation mechanism of green phosphorescent dye doped polymer light-emitting diodes. Thin Solid Films, 2013, 531, 419-423.	0.8	0
355	Extremely high efficiency phosphorescent organic light-emitting diodes with horizontal emitting dipoles. Proceedings of SPIE, 2014, , .	0.8	0
356	Temperature and interfacial buffer layer effects on the nanostructure in a copper(II) phthalocyanine: Fullerene bulk heterojunction. Materials Research Bulletin, 2014, 58, 102-106.	2.7	0
357	Crystallinity and interface of 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile thin films between organic and transparent conductive oxide layers. Applied Physics Express, 2015, 8, 051601.	1.1	0
358	PhOLEDs: Finely Tuned Blue Iridium Complexes with Varying Horizontal Emission Dipole Ratios and Quantum Yields for Phosphorescent Organic Light-Emitting Diodes (Advanced Optical Materials) Tj ETQq0 0 0 rg	;BT3 /O verlo	ocko10 Tf 50 1
359	N-type molecular electrical doping in organic semiconductors: formation and dissociation efficiencies of charge transfer complex. , 2016, , .		0

360 Exciplex: from its nature to applications. , 2015, , .

#	Article	IF	CITATIONS
361	Maskless integration of nano lens arrays (NLAs) on inverted top emitting organic light emitting diodes (TEOLEDs) for high light extraction efficiency. , 2016, , .		0
362	50â€2: <i>Invited Paper</i> : Highly Efficient OLEDs using Exciplex Hosts. Digest of Technical Papers SID International Symposium, 2017, 48, 746-749.	0.1	0
363	Breaking the Efficiency Limit of Deepâ€Blue Fluorescent OLEDs Based on Anthracene Derivatives (Adv.) Tj ETQq1	1 0.7843	14 rgBT /Ove