Yankai Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407154/publications.pdf Version: 2024-02-01

ΥλΝΚΑΙ ΧΙΕ

#	Article	IF	CITATIONS
1	A bioreactor and nutrient balancing approach for the conversion of solid organic fertilizers to liquid nitrate-rich fertilizers: Mineralization and nitrification performance complemented with economic aspects. Science of the Total Environment, 2022, 806, 150415.	3.9	3
2	Storage without nitrite or nitrate enables the long-term preservation of full-scale partial nitritation/anammox sludge. Science of the Total Environment, 2022, 806, 151330.	3.9	13
3	Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox. Bioresource Technology, 2021, 342, 125996.	4.8	20
4	Return-Sludge Treatment with Endogenous Free Nitrous Acid Limits Nitrate Production and N ₂ O Emission for Mainstream Partial Nitritation/Anammox. Environmental Science & Technology, 2020, 54, 5822-5831.	4.6	17
5	Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs. Bioresource Technology, 2018, 253, 112-120.	4.8	81
6	The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen. Bioresource Technology, 2017, 230, 132-139.	4.8	106
7	Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA. Chemical Engineering Journal, 2017, 316, 410-418.	6.6	91
8	Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 2017, 332, 79-86.	6.5	497
9	Single and combined removal of Cr(VI) and Cd(II) by nanoscale zero-valent iron in the absence and presence of EDDS. Water Science and Technology, 2017, 76, 1261-1271.	1.2	9
10	Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions. Separation and Purification Technology, 2017, 175, 376-383.	3.9	75
11	The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Journal of Hazardous Materials, 2017, 321, 390-407.	6.5	207
12	The comparison of Se(IV) and Se(VI) sequestration by nanoscale zero-valent iron in aqueous solutions: The roles of solution chemistry. Journal of Hazardous Materials, 2017, 338, 306-312.	6.5	57
13	EDDS-assisted reduction of Cr(VI) by nanoscale zero-valent iron. Separation and Purification Technology, 2016, 165, 86-91.	3.9	42
14	Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution. Journal of Hazardous Materials, 2016, 312, 234-242.	6.5	84
15	Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron. Environmental Pollution, 2016, 211, 363-369.	3.7	61
16	Chromate removal by surface-modified nanoscale zero-valent iron: Effect of different surface coatings and water chemistry. Journal of Colloid and Interface Science, 2016, 471, 7-13.	5.0	90
17	The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Chemosphere, 2016, 144, 1682-1689.	4.2	88