Edward M Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407119/publications.pdf

Version: 2024-02-01

73 papers

2,279 citations

186265
28
h-index

233421 45 g-index

73 all docs

73 docs citations

73 times ranked 2660 citing authors

#	Article	IF	CITATIONS
1	The Role of Genomics in Food Quality and Safety Management: Possibilities and Limitations. , 2021 , , $127-137$.		1
2	Genomic insights into persistence of Listeria species in the food processing environment. Journal of Applied Microbiology, 2021, 131, 2082-2094.	3.1	35
3	Colonisation dynamics of Listeria monocytogenes strains isolated from food production environments. Scientific Reports, 2021, 11, 12195.	3.3	14
4	Characterisation of Listeria monocytogenes food-associated isolates to assess environmental fitness and virulence potential. International Journal of Food Microbiology, 2021, 350, 109247.	4.7	18
5	High-Throughput Characterization of Listeria monocytogenes Using the OmniLog Phenotypic Microarray. Methods in Molecular Biology, 2021, 2220, 107-113.	0.9	1
6	High-Throughput Screening of Biofilm Formation of Listeria monocytogenes on Stainless Steel Coupons Using a 96-Well Plate Format. Methods in Molecular Biology, 2021, 2220, 115-122.	0.9	0
7	Prevalence, Pathogenicity, Virulence, Antibiotic Resistance, and Phylogenetic Analysis of Biofilm-Producing Listeria monocytogenes Isolated from Different Ecological Niches in Egypt: Food, Humans, Animals, and Environment. Pathogens, 2020, 9, 5.	2.8	21
8	Recovery of wasted fruit and vegetables for improving sustainable diets. Trends in Food Science and Technology, 2020, 95, 75-85.	15.1	57
9	The migration of acetochlor from feed to milk. RSC Advances, 2020, 10, 44344-44351.	3. 6	3
10	Multiplex loop-mediated isothermal amplification-based lateral flow dipstick for simultaneous detection of 3 food-borne pathogens in powdered infant formula. Journal of Dairy Science, 2020, 103, 4002-4012.	3.4	36
11	Staphylococcus aureus – Dairy. , 2020, , .		O
12	Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nature Communications, 2020, 11, 760.	12.8	51
13	Comparative Genomics and Phenotypic Investigations Into Antibiotic, Heavy Metal, and Disinfectant Susceptibilities of Salmonella enterica Strains Isolated in Australia. Frontiers in Microbiology, 2019, 10, 1620.	3.5	13
14	Typing and evaluating heat resistance of Bacillus cereus sensu stricto isolated from the processing environment of powdered infant formula. Journal of Dairy Science, 2019, 102, 7781-7793.	3.4	35
15	Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period. MSphere, 2019, 4, .	2.9	82
16	A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nature Microbiology, 2019, 4, 362-374.	13.3	78
17	Key pathogenic bacteria associated with dairy foods: On-farm ecology and products associated with foodborne pathogen transmission. International Dairy Journal, 2018, 84, 28-35.	3.0	12
18	Vibrational spectroscopy combined with transcriptomic analysis for investigation of bacterial responses towards acid stress. Applied Microbiology and Biotechnology, 2018, 102, 333-343.	3.6	14

#	Article	IF	CITATIONS
19	A Comparative Study of the Susceptibility of Listeria Species to Sanitizer Treatments When Grown under Planktonic and Biofilm Conditions. Journal of Food Protection, 2018, 81, 1481-1490.	1.7	15
20	Silver nanoparticles: A novel antibacterial agent for control of Cronobacter sakazakii. Journal of Dairy Science, 2018, 101, 10775-10791.	3.4	28
21	Antimicrobial Resistance in Listeria Species. , 2018, , 237-259.		2
22	Antimicrobial Resistance in <i>Listeria</i> Species. Microbiology Spectrum, 2018, 6, .	3.0	32
23	Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities. Frontiers in Microbiology, 2018, 9, 605.	3.5	85
24	Virulence Gene Sequencing Highlights Similarities and Differences in Sequences in Listeria monocytogenes Serotype 1/2a and 4b Strains of Clinical and Food Origin From 3 Different Geographic Locations. Frontiers in Microbiology, 2018, 9, 1103.	3.5	37
25	Phenotypic and Genotypic Analysis of Antimicrobial Resistance among Listeria monocytogenes Isolated from Australian Food Production Chains. Genes, 2018, 9, 80.	2.4	60
26	Draft Genome Sequence of Leifsonia sp. Strain NCR5, a Rhizobacterium Isolated from Cadmium-Contaminated Soil. Genome Announcements, 2017, 5, .	0.8	4
27	Draft Genome Sequences of 15 Staphylococcus aureus Isolates Recovered from Raw Milk and Associated Milk Filters from Victoria, Australia. Genome Announcements, 2017, 5, .	0.8	0
28	Food safety for food security: Relationship between global megatrends and developments in food safety. Trends in Food Science and Technology, 2017, 68, 160-175.	15.1	293
29	Whole genome sequence analysis; an improved technology that identifies underlying genotypic differences between closely related Listeria monocytogenes strains. Innovative Food Science and Emerging Technologies, 2017, 44, 89-96.	5.6	8
30	Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth. Toxins, 2017, 9, 225.	3.4	17
31	Analysis of the Listeria monocytogenes Population Structure among Isolates from 1931 to 2015 in Australia. Frontiers in Microbiology, 2017, 8, 603.	3.5	35
32	Editorial: Microbial Food Safety along the Dairy Chain. Frontiers in Microbiology, 2017, 8, 1612.	3.5	4
33	Characterization of Escherichia coli and Salmonella from Victoria, Australia, Dairy Farm Environments. Journal of Food Protection, 2017, 80, 2078-2082.	1.7	6
34	Bi-State Conference 2016: event report. Microbiology Australia, 2017, 38, 36.	0.4	0
35	Draft Genome Sequence of Rhodococcus erythropolis NSX2, an Actinobacterium Isolated from a Cadmium-Contaminated Environment. Genome Announcements, 2016, 4, .	0.8	1
36	Comparative Genomics of the Listeria monocytogenes ST204 Subgroup. Frontiers in Microbiology, 2016, 7, 2057.	3.5	34

3

#	Article	IF	CITATIONS
37	Comparative Genomic Analysis of Two Serotype $1/2b$ Listeria monocytogenes Isolates from Analogous Environmental Niches Demonstrates the Influence of Hypervariable Hotspots in Defining Pathogenesis. Frontiers in Nutrition, 2016, 3, 54.	3.7	4
38	Draft Genome Sequence of Enterobacter ludwigii NCR3, a Heavy Metal–Resistant Rhizobacterium. Genome Announcements, 2016, 4, .	0.8	5
39	Draft Genome Sequences of 15 Isolates of Listeria monocytogenes Serotype 1/2a, Subgroup ST204. Genome Announcements, 2016, 4, .	0.8	7
40	Characterization of Staphylococcus aureus isolates from raw milk sources in Victoria, Australia. BMC Microbiology, 2016, 16, 169.	3.3	66
41	Draft Genome Sequence of Bacillus cereus LCR12, a Plant Growth–Promoting Rhizobacterium Isolated from a Heavy Metal–Contaminated Environment. Genome Announcements, 2016, 4, .	0.8	8
42	Draft Genome Sequences of Listeria monocytogenes Serotype 4b Strains 944 and 2993 and Serotype 1/2c Strains 198 and 2932. Genome Announcements, 2016, 4, .	0.8	2
43	Seasonal occurrence and molecular diversity of clostridia species spores along cheesemaking streams of 5 commercial dairy plants. Journal of Dairy Science, 2016, 99, 3358-3366.	3.4	32
44	Control of Listeria species food safety at a poultry food production facility. Food Microbiology, 2015, 51, 81-86.	4.2	22
45	Complete Genome Sequence of Listeria monocytogenes Strain DPC6895, a Serotype $1/2b$ Isolate from Bovine Raw Milk. Genome Announcements, $2015,3,.$	0.8	3
46	Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry. International Journal of Food Microbiology, 2015, 202, 1-9.	4.7	71
47	Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment. BMC Microbiology, 2015, 15, 38.	3.3	30
48	Differential Gene Expression of Three Gene Targets among Persistent and Nonpersistent Listeria monocytogenes Strains in the Presence or Absence of Benzethonium Chloride. Journal of Food Protection, 2015, 78, 1569-1573.	1.7	6
49	Pulsed-Field Gel Electrophoresis for Listeria monocytogenes. Methods in Molecular Biology, 2015, 1301, 43-53.	0.9	1
50	Pulsed-Field Gel Electrophoresis of Bacillus cereus Group Strains. Methods in Molecular Biology, 2015, 1301, 71-83.	0.9	4
51	Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility. Frontiers in Microbiology, 2014, 5, 68.	3.5	75
52	Comparison of Listeria monocytogenes Isolates across the Island of Ireland. Journal of Food Protection, 2014, 77, 1402-1406.	1.7	4
53	Phylogenetic Profiles of In-House Microflora in Drains at a Food Production Facility: Comparison and Biocontrol Implications of Listeria-Positive and -Negative Bacterial Populations. Applied and Environmental Microbiology, 2014, 80, 3369-3374.	3.1	46
54	Collaborative Survey on the Colonization of Different Types of Cheese-Processing Facilities with <i>Listeria monocytogenes</i> . Foodborne Pathogens and Disease, 2014, 11, 8-14.	1.8	48

#	Article	IF	Citations
55	Prevalence and characterization of foodborne pathogens from Australian dairy farm environments. Journal of Dairy Science, 2014, 97, 7402-7412.	3.4	87
56	Listeria monocytogenes. Methods in Molecular Biology, 2014, , .	0.9	6
57	High-Throughput Characterization of Listeria monocytogenes Using the OmniLog Phenotypic Microarray. Methods in Molecular Biology, 2014, 1157, 103-108.	0.9	9
58	Genome Sequence of Cronobacter sakazakiiSP291, a Persistent Thermotolerant Isolate Derived from a Factory Producing Powdered Infant Formula. Genome Announcements, 2013, 1, e0008213.	0.8	24
59	Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Frontiers in Microbiology, 2013, 4, 256.	3.5	61
60	PFGE analysis of Listeria monocytogenes isolates of clinical, animal, food and environmental origin from Ireland. Journal of Medical Microbiology, 2012, 61, 540-547.	1.8	48
61	Troubleshooting the environmental source of contamination with Listeria monocytogenes in a typical small food manufacturing plant in Ireland. , 2012, , 95-101.		3
62	Surveillance of Verocytotoxigenic <i>Escherichia coli</i> in Irish Bovine Dairy Herds. Zoonoses and Public Health, 2012, 59, 264-271.	2.2	25
63	Molecular Diversity of <i>Listeria monocytogenes </i> Isolated from Irish Dairy Farms. Foodborne Pathogens and Disease, 2011, 8, 635-641.	1.8	20
64	Listeria monocytogenes in Irish Farmhouse cheese processing environments. International Journal of Food Microbiology, 2011, 145, S39-S45.	4.7	87
65	Physiological and Transcriptional Characterization of Persistent and Nonpersistent Listeria monocytogenes Isolates. Applied and Environmental Microbiology, 2011, 77, 6559-6569.	3.1	121
66	Listeria monocytogenes in the Irish Dairy Farm Environment. Journal of Food Protection, 2009, 72, 1450-1456.	1.7	102
67	Insights into the molecular basis of the microaerophily of three Campylobacterales: a comparative study. Antonie Van Leeuwenhoek, 2009, 96, 545-557.	1.7	8
68	<i>Enterobacter sakazakii</i> survives spray drying. International Journal of Dairy Technology, 2008, 61, 102-108.	2.8	40
69	Towards a one-stepEnterobacter sakazakiienrichment. Journal of Applied Microbiology, 2008, 105, 1091-1097.	3.1	7
70	Campylobacter jejuniresponse to ox-bile stress. FEMS Immunology and Medical Microbiology, 2007, 49, 165-172.	2.7	39
71	Effects of Helicobacter hepaticus on the proteome of HEp-2 cells. Antonie Van Leeuwenhoek, 2007, 92, 289-300.	1.7	5
72	Phosphonate degradation in microorganisms. Enzyme and Microbial Technology, 2006, 40, 145-150.	3.2	21

ARTICLE IF CITATIONS

73 52. <i>Listeria monocytogenes</i> in farmhouse cheese., 0,, 793-806. 0