Jason Madore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4071024/publications.pdf

Version: 2024-02-01

42 papers

6,472 citations

32 h-index 289141 40 g-index

43 all docs 43 docs citations

43 times ranked 12101 citing authors

#	Article	IF	CITATIONS
1	Tumor intrinsic and extrinsic immune functions of CD155. Seminars in Cancer Biology, 2020, 65, 189-196.	4.3	85
2	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	6.6	79
3	Nicotinamide for skin cancer chemoprevention: effects of nicotinamide on melanoma in vitro and in vivo. Photochemical and Photobiological Sciences, 2020, 19, 171-179.	1.6	24
4	Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2020, 26, 3671-3681.	3.2	53
5	Targeting CD39 in Cancer Reveals an Extracellular ATP- and Inflammasome-Driven Tumor Immunity. Cancer Discovery, 2019, 9, 1754-1773.	7.7	173
6	CD96 Is an Immune Checkpoint That Regulates CD8+ T-cell Antitumor Function. Cancer Immunology Research, 2019, 7, 559-571.	1.6	79
7	Timing of neoadjuvant immunotherapy in relation to surgery is crucial for outcome. Oncolmmunology, 2019, 8, e1581530.	2.1	69
8	Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell, 2019, 35, 238-255.e6.	7.7	547
9	Inter―and intrapatient heterogeneity of indoleamine 2,3â€dioxygenase expression in primary and metastatic melanoma cells and the tumour microenvironment. Histopathology, 2019, 74, 817-828.	1.6	16
10	A Reduction in Inflammatory Macrophages May Contribute to Skin Cancer Chemoprevention by Nicotinamide. Journal of Investigative Dermatology, 2019, 139, 467-469.	0.3	17
11	Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients. Oncolmmunology, 2019, 8, e1537581.	2.1	61
12	RGS7 is recurrently mutated in melanoma and promotes migration and invasion of human cancer cells. Scientific Reports, 2018, 8, 653.	1.6	13
13	CD103+ Tumor-Resident CD8+ T Cells Are Associated with Improved Survival in Immunotherapy-NaÃ⁻ve Melanoma Patients and Expand Significantly During Anti–PD-1 Treatment. Clinical Cancer Research, 2018, 24, 3036-3045.	3.2	297
14	HDAC inhibitors restore BRAFâ€inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. International Journal of Cancer, 2018, 142, 1926-1937.	2.3	48
15	The critical role of tumour-resident cytotoxic T cells in human malignancies. Pathology, 2018, 50, S47.	0.3	О
16	Transcriptomic and immunophenotypic profiles of melanoma tissue from patients (pts) treated with anti-PD-1 $+$ /- ipilimumab to define mechanisms of response and resistance Journal of Clinical Oncology, 2018, 36, 9518-9518.	0.8	0
17	Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early During Treatment Predict Response to PD-1 Blockade in Melanoma. Clinical Cancer Research, 2017, 23, 5024-5033.	3.2	192
18	Reply to comment on: Detailed Pathological Examination of Completion Node Dissection Specimens and Outcome in Melanoma Patients with Minimal (<Â0.1Âmm) Sentinel Lymph Node Metastases. Annals of Surgical Oncology, 2017, 24, 660-660.	0.7	1

#	Article	IF	CITATIONS
19	Tumor Suppressor microRNAs Contribute to the Regulation of PD-L1 Expression in Malignant PleuralÂMesothelioma. Journal of Thoracic Oncology, 2017, 12, 1421-1433.	0.5	121
20	MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy. Cancer Research, 2017, 77, 4697-4709.	0.4	126
21	Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Research, 2017, 77, 4684-4696.	0.4	80
22	Programmed cell death-ligand 1 expression in oral squamous cell carcinoma is associated with an inflammatory phenotype. Pathology, 2016, 48, 574-580.	0.3	59
23	Programmed death ligand 1 expression in tripleâ€negative breast cancer is associated with tumourâ€infiltrating lymphocytes and improved outcome. Histopathology, 2016, 69, 25-34.	1.6	177
24	PD-L1 Negative Status is Associated with Lower Mutation Burden, Differential Expression of Immune-Related Genes, and Worse Survival in Stage III Melanoma. Clinical Cancer Research, 2016, 22, 3915-3923.	3.2	91
25	Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget, 2015, 6, 27023-27036.	0.8	83
26	Detailed Pathological Examination of Completion Node Dissection Specimens and Outcome in Melanoma Patients with Minimal (<0.1Âmm) Sentinel Lymph Node Metastases. Annals of Surgical Oncology, 2015, 22, 2972-2977.	0.7	13
27	PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer, 2015, 89, 181-188.	0.9	253
28	UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas. Cancer Research, 2015, 75, 5228-5234.	0.4	270
29	<scp>PD</scp> ‣1 expression in melanoma shows marked heterogeneity within and between patients: implications for antiâ€ <scp>PD</scp> ‣/ <scp>PD</scp> <scp>L</scp> 1 clinical trials. Pigment Cell and Melanoma Research, 2015, 28, 245-253.	1.5	356
30	Recurrent inactivating RASA2 mutations in melanoma. Nature Genetics, 2015, 47, 1408-1410.	9.4	90
31	Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget, 2015, 6, 21507-21521.	0.8	72
32	Hormone-receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study. Lancet Oncology, The, 2013, 14, 853-862.	5.1	335
33	Specimen Quality Evaluation in Canadian Biobanks Participating in the COEUR Repository. Biopreservation and Biobanking, 2013, 11, 83-93.	0.5	35
34	BTN3A2 Expression in Epithelial Ovarian Cancer Is Associated with Higher Tumor Infiltrating T Cells and a Better Prognosis. PLoS ONE, 2012, 7, e38541.	1.1	84
35	H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic geneBCL2determines ERα ligand dependency. EMBO Journal, 2011, 30, 3947-3961.	3.5	77
36	Role of Pirh2 in Mediating the Regulation of p53 and c-Myc. PLoS Genetics, 2011, 7, e1002360.	1.5	65

#	Article	IF	CITATIONS
37	Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. Journal of Pathology, 2010, 220, 392-400.	2.1	92
38	A novel method of cell embedding for tissue microarrays. Histopathology, 2010, 57, 323-329.	1.6	6
39	<i>ARID1A</i> Mutations in Endometriosis-Associated Ovarian Carcinomas. New England Journal of Medicine, 2010, 363, 1532-1543.	13.9	1,460
40	Mutation of <i>FOXL2 </i> ii> in Granulosa-Cell Tumors of the Ovary. New England Journal of Medicine, 2009, 360, 2719-2729.	13.9	706
41	An apoptotic molecular network identified by microarray: On the TRAIL to new insights in epithelial ovarian cancer. Cancer, 2007, 110, 297-308.	2.0	18
42	From gene profiling to diagnostic markers: IL-18 and FGF-2 complement CA125 as serum-based markers in epithelial ovarian cancer. International Journal of Cancer, 2006, 118, 1750-1758.	2.3	49