Magnus Svärd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070994/publications.pdf

Version: 2024-02-01

36	1,714	18	35
papers	citations	h-index	g-index
36	36	36	469 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Stability Issues of Entropy-Stable and/or Split-form High-order Schemes. Journal of Scientific Computing, 2022, 90, 1.	2.3	4
2	Convergence of energy stable finite-difference schemes with interfaces. Journal of Computational Physics, 2021, 429, 110020.	3.8	4
3	Entropy stable boundary conditions for the Euler equations. Journal of Computational Physics, 2021, 426, 109947.	3.8	10
4	Numerical study of two models for viscous compressible fluid flows. Journal of Computational Physics, 2021, 427, 110068.	3.8	13
5	Large Eddy Simulations by approximate weak entropy solutions. Journal of Computational Physics, 2021, , 110737.	3.8	O
6	On the convergence rates of energy-stable finite-difference schemes. Journal of Computational Physics, 2019, 397, 108819.	3.8	27
7	Entropy Stability and the No-Slip Wall Boundary Condition. SIAM Journal on Numerical Analysis, 2018, 56, 256-273.	2.3	12
8	Response to "Convergence of Summation-by-Parts Finite Difference Methods for the Wave Equationâ€. Journal of Scientific Computing, 2018, 74, 1188-1192.	2.3	3
9	A new Eulerian model for viscous and heat conducting compressible flows. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 350-375.	2.6	29
10	A Convergent Numerical Scheme for the Compressible Navier-Stokes Equations. SIAM Journal on Numerical Analysis, 2016, 54, 1484-1506.	2.3	12
11	Entropy solutions of the compressible Euler equations. BIT Numerical Mathematics, 2016, 56, 1479-1496.	2.0	3
12	Efficiency Benchmarking of an Energy Stable High-Order Finite Difference Discretization. AIAA Journal, 2015, 53, 1845-1860.	2.6	4
13	Weak solutions and convergent numerical schemes of modified compressible Navier–Stokes equations. Journal of Computational Physics, 2015, 288, 19-51.	3.8	24
14	Review of summation-by-parts schemes for initial–boundary-value problems. Journal of Computational Physics, 2014, 268, 17-38.	3.8	314
15	Entropy-Stable Schemes for the Euler Equations with Far-Field and Wall Boundary Conditions. Journal of Scientific Computing, 2014, 58, 61-89.	2.3	55
16	A note on \$\$L^{infty}\$\$ L â^ž bounds and convergence rates of summation-by-parts schemes. BIT Numerical Mathematics, 2014, 54, 823-830.	2.0	3
17	Entropy stable schemes for initial-boundary-value conservation laws. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 985-1003.	1.4	16
18	Third-order accurate entropy-stable schemes for initial-boundary-value conservation laws. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 599-623.	1.4	6

#	Article	IF	CITATIONS
19	Implicit–explicit schemes for flow equations with stiff source terms. Journal of Computational and Applied Mathematics, 2011, 235, 1564-1577.	2.0	10
20	An adaptive implicit–explicit scheme for the DNS and LES of compressible flows on unstructured grids. Journal of Computational Physics, 2010, 229, 5944-5965.	3.8	39
21	A computational study of vortex–airfoil interaction using high-order finite difference methods. Computers and Fluids, 2010, 39, 1267-1274.	2.5	12
22	On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numerical Mathematics, 2010, 50, 85-108.	2.0	31
23	Higher order finite difference schemes for the magnetic induction equations. BIT Numerical Mathematics, 2009, 49, 375-395.	2.0	13
24	Shock Capturing Artificial Dissipation for High-Order Finite DifferenceÂSchemes. Journal of Scientific Computing, 2009, 39, 454-484.	2.3	12
25	A stable and conservative high order multi-block method for the compressible Navier–Stokes equations. Journal of Computational Physics, 2009, 228, 9020-9035.	3.8	119
26	A hybrid method for unsteady inviscid fluid flow. Computers and Fluids, 2009, 38, 875-882.	2.5	22
27	A stable high-order finite difference scheme for the compressible Navier–Stokes equations. Journal of Computational Physics, 2008, 227, 4805-4824.	3.8	168
28	An accuracy evaluation of unstructured node-centred finite volume methods. Applied Numerical Mathematics, 2008, 58, 1142-1158.	2.1	20
29	High-order accurate computations for unsteady aerodynamics. Computers and Fluids, 2007, 36, 636-649.	2.5	47
30	A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions. Journal of Computational Physics, 2007, 225, 1020-1038.	3.8	195
31	Stable artificial dissipation operators for finite volume schemes on unstructured grids. Applied Numerical Mathematics, 2006, 56, 1481-1490.	2.1	18
32	On the order of accuracy for difference approximations of initial-boundary value problems. Journal of Computational Physics, 2006, 218, 333-352.	3.8	144
33	Steady-State Computations Using Summation-by-Parts Operators. Journal of Scientific Computing, 2005, 24, 79-95.	2.3	44
34	Well-Posed Boundary Conditions for the Navier-Stokes Equations. SIAM Journal on Numerical Analysis, 2005, 43, 1231-1255.	2.3	102
35	Stable and Accurate Artificial Dissipation. Journal of Scientific Computing, 2004, 21, 57-79.	2.3	144
36	Stability of finite volume approximations for the Laplacian operator on quadrilateral and triangular grids. Applied Numerical Mathematics, 2004, 51, 101-125.	2.1	35