
Nadezhda Sevostyanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Model of selectivity to methyl pelargonate in hydrocarbomethoxylation of 1-octene in the presence of the Pd(PPh3)2Cl2—PPh3—p-toluenesulfonic acid catalytic system. Russian Chemical Bulletin, 2020, 69, 1561-1568.	1.5	1
2	Methylenealkane-Based Low-Viscosity Ester Oils: Synthesis and Outlook. Lubricants, 2020, 8, 50.	2.9	11
3	Kinetic models of the cyclohexene hydromethoxycarbonylation catalyzed by the Pd(OAc) ₂ / <i>trans</i> â€2,3â€bis(diphenylphosphinomethyl)norbornane/ <i>p</i> â€toluensulfonic acid. International Journal of Chemical Kinetics, 2019, 51, 274-279.	1.6	0
4	Synthesis of methyl β-alkylcarboxylates by Pd/diphosphine-catalyzed methoxycarbonylation of methylenealkanes RCH2CH2C(R)=CH2. Applied Catalysis A: General, 2019, 581, 123-132.	4.3	12
5	Hydrocarbomethoxylation of Cyclohexene Catalyzed by Pd(OAc)2-PPh3-p-Toluenesulfonic Acid. Some Aspects of Reaction Kinetics and Thermodynamics of Ligand Exchange between Palladium Complexes. Russian Journal of Physical Chemistry B, 2019, 13, 245-252.	1.3	4
6	Kinetic model for cyclohexene hydromethoxycarbonylation catalyzed by RuCl3. Russian Chemical Bulletin, 2019, 68, 540-546.	1.5	1
7	Determination of Kinetic Order of Reaction for its Duration in the Study of Solvation Factor Effect on Cyclohexene Hydrocarbomethoxylation Catalyzed by Palladium-Phosphine Systems. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, , 103-116.	0.5	0
8	Cyclohexene Hydrocarbomethoxylation Catalyzed by the RuCl3–NaCl System. Russian Journal of Physical Chemistry B, 2018, 12, 593-594.	1.3	4
9	Kinetic equations and models of cyclohexene hydrocarbomethoxylation catalyzed by the RuCl3 and RuCl3/NaCl system. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 505-520.	1.7	1
10	Cyclohexene hydrocarbomethoxylation catalyzed by ruthenium(III) chloride. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 315-331.	1.7	6
11	Kinetic models of cyclohexene hydrocarbomethoxylation catalyzed by the Pd(PPh3)2Cl2–PPh3–p-toluenesulfonic acid system. Russian Journal of Physical Chemistry B, 2017, 11, 129-132.	1.3	2
12	Kinetic aspects of the influence of CO pressure on cyclohexene hydrocarbomethoxylation catalyzed byÂa diphosphine palladium system. Thermodynamic characteristics of some ligand exchange reactions. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 75-91.	1.7	6
13	Temperature Aspect of CH3OH effect on the rate of cyclohexene hydrocarbomethoxylation catalyzed by the Pd(OAc)2–PPh3–p-toluenesulfonic acid system. Russian Journal of Physical Chemistry B, 2016, 10, 231-237.	1.3	4
14	Kinetic aspects of the influence of concentrations of methanol and the trans-2,3-bis(diphenylphosphinomethyl)norbornane promoting additive on the hydrocarbomethoxylation of cyclohexene catalyzed by the Pd(OAc)2/p-toluenesulfonic acid system. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 63-77.	1.7	7
15	Effect of temperature and CO pressure on the rate of cyclohexene hydrocarbomethoxylation catalyzed by the Pd(OAc)2-PPh3-TsOH system. Russian Chemical Bulletin, 2014, 63, 837-842.	1.5	5
16	Kinetics and mechanism of cyclohexene hydrocarbomethoxylation catalyzed by the Pd(OAc)2-PPh3-p-toluenesulfonic acid system. Russian Journal of Physical Chemistry B, 2014, 8, 140-147.	1.3	13
17	Kinetic aspects of the effect of CO pressure and methanol concentration on cyclohexene hydrocarbomethoxylation in the presence of the Pd(PPh3)2Cl2-PPh3-p-toluenesulfonic acid catalytic system. Petroleum Chemistry, 2013, 53, 39-45.	1.4	8
18	The concentration effects of reactants and components in the Pd(OAc)2/p-toluenesulphonic acid/trans-2,3-bis(diphenylphosphinomethyl)-norbornane catalytic system on the rate of cyclohexene hydrocarbomethoxylation. Applied Catalysis A: General, 2012, 449, 145-152.	4.3	15

#	Article	IF	CITATIONS
19	Steric and electronic factors in the promoting activity of diphosphine ligands in cyclohexene hydrocarbomethoxylation catalyzed by palladium acetate. Kinetics and Catalysis, 2012, 53, 462-469.	1.0	2
20	Kinetic aspects of the effect of the palladium phosphine complex Pd(PPh3)2Cl2 and free triphenylphosphine on hydrocarbomethoxylation of cyclohexene. Petroleum Chemistry, 2012, 52, 35-40.	1.4	5
21	Effect of the structure and concentration of diphosphine ligands on the rate of hydrocarbomethoxylation of cyclohexene catalyzed by palladium acetate/diphosphine/TsOH system. Journal of Molecular Catalysis A, 2011, 350, 64-68.	4.8	16
22	Mechanism of the solvent effect on the rate of the cyclohexene hydroxymethoxycarbonylation catalyzed by bis(triphenylphosphine)palladium. Russian Journal of General Chemistry, 2011, 81, 663-668.	0.8	1
23	Kinetics of cyclohexene hydrocarbalkoxylation with cyclohexanol catalyzed by the Pd(PPh3)2Cl2-PPh3-p-toluenesulfonic acid system. Petroleum Chemistry, 2008, 48, 287-295.	1.4	11
24	Influence of components of the PdCl2(PPh3)2-PPh3-p-toluenesulfonic acid catalytic system on the rate of cyclohexene hydrocarbalkoxylation with m-cresol. Petroleum Chemistry, 2007, 47, 167-175.	1.4	1
25	Kinetics and mechanism of cyclohexene hydrocarbomethoxylation catalyzed by a Pd(II) complex. Kinetics and Catalysis, 2006, 47, 375-383.	1.0	20
26	Mechanism of the catalytic effect of the Pd(PPh3)2Cl2-PPh3-p-toluenesulfonic acid system on cyclohexene hydrocarbalkoxylation in cyclohexanol. Petroleum Chemistry, 2006, 46, 405-414.	1.4	8