Xin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070906/publications.pdf

Version: 2024-02-01

236925 2,408 70 25 h-index citations papers

46 g-index 74 74 74 3444 docs citations times ranked citing authors all docs

223800

#	Article	IF	CITATIONS
1	Static Magnetic Fields Reduce Oxidative Stress to Improve Wound Healing and Alleviate Diabetic Complications. Cells, 2022, 11, 443.	4.1	18
2	The Antiâ€Depressive Effects of Ultraâ€High Static Magnetic Field. Journal of Magnetic Resonance Imaging, 2022, 56, 354-365.	3.4	16
3	Short- and long-term effects of 3.5–23.0 Tesla ultra-high magnetic fields on mice behaviour. European Radiology, 2022, 32, 5596-5605.	4.5	10
4	Effects of Moderate to High Static Magnetic Fields on Reproduction. Bioelectromagnetics, 2022, 43, 278-291.	1.6	4
5	A Rationally Designed Building Block of the Putative Magnetoreceptor MagR. Bioelectromagnetics, 2022, 43, 317-326.	1.6	5
6	Exogenously Triggered Nanozyme for Real-Time Magnetic Resonance Imaging-Guided Synergistic Cascade Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29650-29658.	8.0	8
7	p53-dependent elimination of aneuploid mitotic offspring by entosis. Cell Death and Differentiation, 2021, 28, 799-813.	11.2	37
8	The Analgesic Effects of Static Magnetic Fields. Bioelectromagnetics, 2021, 42, 115-127.	1.6	12
9	A Static Magnetic Field Improves Iron Metabolism and Prevents High-Fat-Diet/Streptozocin-Induced Diabetes. Innovation(China), 2021, 2, 100077.	9.1	17
10	Phospho-regulation and function of ULK1-ATG13 during the cell cycle. Autophagy, 2021, 17, 1054-1056.	9.1	4
11	Alternating Magnetic Field-Responsive Nanoplatforms for Controlled Imidacloprid Release and Sustainable Pest Control. ACS Sustainable Chemistry and Engineering, 2021, 9, 10491-10502.	6.7	11
12	An upward 9.4 T static magnetic field inhibits DNA synthesis and increases ROS-P53 to suppress lung cancer growth. Translational Oncology, 2021, 14, 101103.	3.7	26
13	An Operation Guide of Si-MOS Quantum Dots for Spin Qubits. Nanomaterials, 2021, 11, 2486.	4.1	5
14	Safety evaluation of mice exposed to 7.0–33.0 T highâ€static magnetic fields. Journal of Magnetic Resonance Imaging, 2021, 53, 1872-1884.	3.4	19
15	Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	4.0	9
16	ULK1 inhibitor induces spindle microtubule disorganization and inhibits phosphorylation of Ser10 of histone H3. FEBS Open Bio, 2020, 10, 2452-2463.	2.3	7
17	ULK1-ATG13 and their mitotic phospho-regulation by CDK1 connect autophagy to cell cycle. PLoS Biology, 2020, 18, e3000288.	5.6	43
18	Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field leftâ€right asymmetry. FASEB BioAdvances, 2020, 2, 254-263.	2.4	27

#	Article	IF	Citations
19	Tyr198 is the Essential Autophosphorylation Site for STK16 Localization and Kinase Activity. International Journal of Molecular Sciences, 2019, 20, 4852.	4.1	4
20	Effects of 3.5–23.0â€T static magnetic fields on mice: A safety study. NeuroImage, 2019, 199, 273-280.	4.2	34
21	ROS Reduction Does Not Decrease the Anticancer Efficacy of X-Ray in Two Breast Cancer Cell Lines. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	12
22	Serine/Threonine Protein Kinase STK16. International Journal of Molecular Sciences, 2019, 20, 1760.	4.1	9
23	Magnetic Susceptibility Difference-Induced Nucleus Positioning in Gradient Ultrahigh Magnetic Field. Biophysical Journal, 2019, 118, 578-585.	0.5	9
24	Semiconductor quantum computation. National Science Review, 2019, 6, 32-54.	9.5	102
25	Effects of static magnetic fields on eukaryotic cytoskeleton. Chinese Science Bulletin, 2019, 64, 748-760.	0.7	2
26	Opportunities and challenges of the interdisciplinary research of high magnetic fields and life sciences & amp; healthcare. Chinese Science Bulletin, 2019, 64, 741-747.	0.7	1
27	Magnetic field direction differentially impacts the growth of different cell types. Electromagnetic Biology and Medicine, 2018, 37, 114-125.	1.4	41
28	Cellular ATP levels are affected by moderate and strong static magnetic fields. Bioelectromagnetics, 2018, 39, 352-360.	1.6	30
29	Qubits based on semiconductor quantum dots. Chinese Physics B, 2018, 27, 020305.	1.4	37
30	Effects of 3.7 T–24.5 T high magnetic fields on tumor-bearing mice. Chinese Physics B, 2018, 27, 118703.	1.4	9
31	Moderate intensity low frequency rotating magnetic field inhibits breast cancer growth in mice. Electromagnetic Biology and Medicine, 2018, 37, 192-201.	1.4	8
32	Dopamine Receptor Subtypes Differentially Regulate Autophagy. International Journal of Molecular Sciences, 2018, 19, 1540.	4.1	36
33	6-mT 0–120-Hz magnetic fields differentially affect cellular ATP levels. Environmental Science and Pollution Research, 2018, 25, 28237-28247.	5.3	4
34	Biological Effects of Static Magnetic Fields. , 2017, , .		52
35	Impact of Static Magnetic Fields (SMFs) on Cells. , 2017, , 81-131.		11
36	Parameters of Magnetic Fields and Their Differential Biological Effects., 2017,, 3-25.		3

#	Article	IF	CITATIONS
37	STK16 regulates actin dynamics to control Golgi organization and cell cycle. Scientific Reports, 2017, 7, 44607.	3.3	14
38	Kinases Involved in Both Autophagy and Mitosis. International Journal of Molecular Sciences, 2017, 18, 1884.	4.1	33
39	Magnetic Fields and Reactive Oxygen Species. International Journal of Molecular Sciences, 2017, 18, 2175.	4.1	144
40	27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. ELife, 2017, 6, .	6.0	48
41	Cell type- and density-dependent effect of $1\mathrm{T}$ static magnetic field on cell proliferation. Oncotarget, 2017, 8, 13126-13141.	1.8	48
42	Potential Applications of Static Magnetic Fields (SMFs) in Cancer Treatment., 2017,, 175-199.		0
43	Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle. Oncotarget, 2016, 7, 39705-39718.	1.8	32
44	Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR. PLoS ONE, 2016, 11, e0153526.	2.5	24
45	Discovery of a Highly Selective STK16 Kinase Inhibitor. ACS Chemical Biology, 2016, 11, 1537-1543.	3.4	15
46	Using L-STM to directly visualize enzymatic self-assembly/disassembly of nanofibers. Nanoscale, 2016, 8, 15142-15146.	5.6	8
47	Sub-molecular features of single proteins in solution resolved with scanning tunneling microscopy. Nano Research, 2016, 9, 2551-2560.	10.4	12
48	Autophagy in mitotic animal cells. Science Bulletin, 2016, 61, 105-107.	9.0	4
49	Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol. Bioelectrochemistry, 2016, 109, 31-40.	4.6	38
50	Simultaneous inhibition of Vps34 kinase would enhance PI3K \hat{l} inhibitor cytotoxicity in the B-cell malignancies. Oncotarget, 2016, 7, 53515-53525.	1.8	19
51	G protein \hat{I}^3 subunit 7 induces autophagy and inhibits cell division. Oncotarget, 2016, 7, 24832-24847.	1.8	32
52	Characterization of selective and potent PI3K \hat{l} inhibitor (PI3KD-IN-015) for B-Cell malignances. Oncotarget, 2016, 7, 32641-32651.	1.8	7
53	1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Science Bulletin, 2015, 60, 2120-2128.	9.0	22
54	Assessment of the Effect of Trichostatin A on HeLa Cells through FT-IR Spectroscopy. Analytical Chemistry, 2015, 87, 2511-2517.	6.5	23

#	Article	IF	Citations
55	Characterization of Torin2, an ATP-Competitive Inhibitor of mTOR, ATM, and ATR. Cancer Research, 2013, 73, 2574-2586.	0.9	170
56	Non-traditional roles of G protein-coupled receptors in basic cell biology. Molecular BioSystems, 2013, 9, 586-595.	2.9	21
57	Discovery of a Selective Irreversible BMX Inhibitor for Prostate Cancer. ACS Chemical Biology, 2013, 8, 1423-1428.	3.4	40
58	Dopamine receptor D ₃ regulates endocytic sorting by a Prazosin-sensitive interaction with the coatomer COPI. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12485-12490.	7.1	25
59	G proteinâ€coupled receptors participate in cytokinesis. Cytoskeleton, 2012, 69, 810-818.	2.0	69
60	Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change. Mitochondrion, 2011, 11, 886-892.	3.4	47
61	Aurora A Phosphorylates MCAK to Control Ran-dependent Spindle Bipolarity. Molecular Biology of the Cell, 2008, 19, 2752-2765.	2.1	113
62	The Interplay of the N- and C-Terminal Domains of MCAK Control Microtubule Depolymerization Activity and Spindle Assembly. Molecular Biology of the Cell, 2007, 18, 282-294.	2.1	40
63	Aurora B Phosphorylates Multiple Sites on Mitotic Centromere-associated Kinesin to Spatially and Temporally Regulate Its Function. Molecular Biology of the Cell, 2007, 18, 3264-3276.	2.1	111
64	Chromosome Segregation: Correcting Improperly Attached Chromosomes. Current Biology, 2006, 16, R677-R679.	3.9	4
65	CaMKII \hat{I}^3 -mediated inactivation of the Kin I kinesin MCAK is essential for bipolar spindle formation. EMBO Journal, 2005, 24, 1256-1266.	7.8	44
66	Aurora B Phosphorylates Centromeric MCAK and Regulates Its Localization and Microtubule Depolymerization Activity. Current Biology, 2004, 14, 273-286.	3.9	429
67	Stable RNA structures can repress RNA synthesis in vitro by the brome mosaic virus replicase. Rna, 2003, 9, 555-565.	3.5	8
68	Enhancer-Like Activity of a Brome Mosaic Virus RNA Promoter. Journal of Virology, 2003, 77, 1830-1839.	3.4	30
69	Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation. Oncotarget, 0, 7, 41527-41539.	1.8	45
70	Using Gradient Magnetic Fields to Control the Size and Uniformity of Iron Oxide Nanoparticles for Magnetic Resonance Imaging. ACS Applied Nano Materials, 0, , .	5.0	2