

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070845/publications.pdf Version: 2024-02-01

OINCVL

#	Article	IF	CITATIONS
1	Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. Journal of Experimental Medicine, 2021, 218, .	4.2	59
2	MicroRNA-210 downregulates TET2 and contributes to inflammatory response in neonatal hypoxic-ischemic brain injury. Journal of Neuroinflammation, 2021, 18, 6.	3.1	16
3	Antenatal Hypoxia and Programming of Glucocorticoid Receptor Expression in the Adult Rat Heart. Frontiers in Physiology, 2019, 10, 323.	1.3	17
4	MicroRNAs in brain development and cerebrovascular pathophysiology. American Journal of Physiology - Cell Physiology, 2019, 317, C3-C19.	2.1	36
5	MicroRNA-210 Downregulates ISCU and Induces Mitochondrial Dysfunction and Neuronal Death in Neonatal Hypoxic-Ischemic Brain Injury. Molecular Neurobiology, 2019, 56, 5608-5625.	1.9	24
6	The roles of astrocyte in the brain pathologies following ischemic stroke. Brain Injury, 2019, 33, 712-716.	0.6	22
7	C-type natriuretic peptide functions as an innate neuroprotectant in neonatal hypoxic-ischemic brain injury in mouse via natriuretic peptide receptor 2. Experimental Neurology, 2018, 304, 58-66.	2.0	15
8	Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Experimental Neurology, 2018, 300, 41-50.	2.0	94
9	Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Molecular Neurodegeneration, 2018, 13, 57.	4.4	164
10	Repression of the Glucocorticoid Receptor Aggravates Acute Ischemic Brain Injuries in Adult Mice. International Journal of Molecular Sciences, 2018, 19, 2428.	1.8	16
11	Inhibition of DNA Methylation in the Developing Rat Brain Disrupts Sexually Dimorphic Neurobehavioral Phenotypes in Adulthood. Molecular Neurobiology, 2017, 54, 3988-3999.	1.9	21
12	MicroRNA-210 Suppresses Junction Proteins and Disrupts Blood-Brain Barrier Integrity in Neonatal Rat Hypoxic-Ischemic Brain Injury. International Journal of Molecular Sciences, 2017, 18, 1356.	1.8	60
13	MiR210 in neonatal hypoxic-ischemic encephalopathy. Oncotarget, 2017, 8, 38078-38079.	0.8	4
14	MicroRNA-210 suppresses glucocorticoid receptor expression in response to hypoxia in fetal rat cardiomyocytes. Oncotarget, 2017, 8, 80249-80264.	0.8	23
15	Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart. Journal of Molecular and Cellular Cardiology, 2016, 91, 160-171.	0.9	32
16	Inhibition of microRNA-210 provides neuroprotection in hypoxic–ischemic brain injury in neonatal rats. Neurobiology of Disease, 2016, 89, 202-212.	2.1	104
17	Fetal stress-mediated hypomethylation increases the brain susceptibility to hypoxic–ischemic injury in neonatal rats. Experimental Neurology, 2016, 275, 1-10.	2.0	13
18	Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 216-227.	2.4	464

Qingyi

#	Article	IF	CITATIONS
19	Imatinib preserves blood–brain barrier integrity following experimental subarachnoid hemorrhage in rats. Journal of Neuroscience Research, 2015, 93, 94-103.	1.3	39
20	Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nature Neuroscience, 2015, 18, 978-987.	7.1	334
21	Epigenetic programming of hypoxic–ischemic encephalopathy in response to fetal hypoxia. Progress in Neurobiology, 2015, 124, 28-48.	2.8	47
22	Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1035-42.	3.3	188
23	Reply. Annals of Neurology, 2014, 75, 972-973.	2.8	Ο
24	Gestational hypoxia and epigenetic programming of brain development disorders. Drug Discovery Today, 2014, 19, 1883-1896.	3.2	23
25	NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Annals of Neurology, 2014, 75, 209-219.	2.8	244
26	Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage. Behavioural Brain Research, 2014, 264, 151-160.	1.2	56
27	PAR-1 antagonist SCH79797 ameliorates apoptosis following surgical brain injury through inhibition of ASK1-JNK in rats. Neurobiology of Disease, 2013, 50, 13-20.	2.1	30
28	Statin-Induced T-Lymphocyte Modulation and Neuroprotection Following Experimental Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2013, 115, 259-266.	0.5	20
29	P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiology of Disease, 2013, 58, 296-307.	2.1	133
30	Role of SCH79797 in Maintaining Vascular Integrity in Rat Model of Subarachnoid Hemorrhage. Stroke, 2013, 44, 1410-1417.	1.0	51
31	Hydrogen Inhalation Ameliorated Mast Cell–Mediated Brain Injury After Intracerebral Hemorrhage in Mice. Critical Care Medicine, 2013, 41, 1266-1275.	0.4	56
32	P2X7 Receptor Antagonism Inhibits p38 Mitogen-Activated Protein Kinase Activation and Ameliorates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats. Critical Care Medicine, 2013, 41, e466-e474.	0.4	77
33	Adhesion Molecules in CNS Disorders: Biomarker and Therapeutic Targets. CNS and Neurological Disorders - Drug Targets, 2013, 12, 392-404.	0.8	27
34	CHOP Silencing Reduces Acute Brain Injury in the Rat Model of Subarachnoid Hemorrhage. Stroke, 2012, 43, 484-490.	1.0	63
35	Targeting C/EBP homologous protein with siRNA attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Experimental Neurology, 2012, 238, 218-224.	2.0	22
36	Fibroblast growth factors preserve blood–brain barrier integrity through RhoA inhibition after intracerebral hemorrhage in mice. Neurobiology of Disease, 2012, 46, 204-214.	2.1	77

Qingyi

#	Article	IF	CITATIONS
37	Isoflurane Posttreatment Reduces Brain Injury After an Intracerebral Hemorrhagic Stroke in Mice. Anesthesia and Analgesia, 2011, 113, 343-348.	1.1	37
38	Vascular Adhesion Protein-1 Inhibition Provides Antiinflammatory Protection after an Intracerebral Hemorrhagic Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 881-893.	2.4	85
39	Recombinant Osteopontin Attenuates Brain Injury after Intracerebral Hemorrhage in Mice. Neurocritical Care, 2011, 14, 109-117.	1.2	29
40	PDGFRâ€Î± inhibition preserves bloodâ€brain barrier after intracerebral hemorrhage. Annals of Neurology, 2011, 70, 920-931.	2.8	107
41	Isoflurane Enhanced Hemorrhagic Transformation by Impairing Antioxidant Enzymes in Hyperglycemic Rats With Middle Cerebral Artery Occlusion. Stroke, 2011, 42, 1750-1756.	1.0	52
42	Osteopontin Reduced Hypoxia–Ischemia Neonatal Brain Injury by Suppression of Apoptosis in a Rat Pup Model. Stroke, 2011, 42, 764-769.	1.0	76
43	History of Preclinical Models of Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 3-8.	0.5	21
44	Hydrogen Inhalation is Neuroprotective and Improves Functional Outcomes in Mice After Intracerebral Hemorrhage. Acta Neurochirurgica Supplementum, 2011, 111, 179-183.	0.5	24
45	Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats. Developmental Neurobiology, 2010, 70, 182-194.	1.5	19
46	Ac-YVAD-CMK Decreases Blood–Brain Barrier Degradation by Inhibiting Caspase-1 Activation of	2.3	77

⁴⁶ Interleukin-1Î² in Intracerebral Hemorrhage Mouse Model. Translational Stroke Research, 2010, 1, 57-64.