Fernando Wypych

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4070717/fernando-wypych-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

216 8,796 44 87 g-index

232 9,603 4.7 6.3 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
216	Electromigration of protons and zero valent iron oxidation: A physico-chemical insight to model the kinetics of fenton-like process. <i>Chemical Engineering Journal</i> , 2022 , 435, 135026	14.7	O
215	Oleic acid as a synergistic agent in the formation of kaolinite-mineral oil Pickering emulsions. <i>Applied Clay Science</i> , 2022 , 216, 106378	5.2	О
214	Layered materials as nanocontainers for active corrosion protection: A brief review. <i>Applied Clay Science</i> , 2022 , 225, 106537	5.2	1
213	Shigaite, natroglaucocerinite and motukoreaite-like layered double hydroxides as Pickering emulsifiers in water/oil emulsions: A comparative study. <i>Applied Clay Science</i> , 2021 , 201, 105918	5.2	3
212	Natural and synthetic layered hydroxide salts (LHS): Recent advances and application perspectives emphasizing catalysis. <i>Progress in Solid State Chemistry</i> , 2021 , 64, 100335	8	4
211	Mechanochemical synthesis of eco-friendly fertilizer from eggshell (calcite) and KH2PO4. <i>Advanced Powder Technology</i> , 2021 , 32, 4070-4070	4.6	3
210	K-shigaite-like layered double hydroxide particles as Pickering emulsifiers in oil/water emulsions. <i>Applied Clay Science</i> , 2020 , 193, 105660	5.2	5
209	First synthesis of a nanohybrid composed of a layered double hydroxide of Zn2Al intercalated with SO42[Na+/Ag+ and decorated with Ago nanoparticles. <i>Journal of Solid State Chemistry</i> , 2020 , 288, 1213	9343	2
208	Light-assisted cyclohexane oxidation catalysis by a manganese(III) porphyrin immobilized onto zinc hydroxide salt and zinc oxide obtained by zinc hydroxide salt hydrothermal decomposition. <i>Applied Catalysis A: General</i> , 2020 , 602, 117708	5.1	6
207	Structural analysis of dehydrated gibbsite-based layered double hydroxides LiAlX (X = FDCLD BrDDOHDNO3DCO32Dand SO42Dby DFT calculations. <i>New Journal of Chemistry</i> , 2020 , 44, 10137-10145	3.6	3
206	Synthesis and topotactic exchange reactions of new layered double hydroxides intercalated with ammonium/sulfate. <i>Solid State Sciences</i> , 2020 , 106, 106304	3.4	2
205	Layered double hydroxides with the composition [Mn6Al3(OH)18][(HPO42\PA+].yH2O (A+ = Li, Na or K) obtained by topotactic exchange reactions. <i>Applied Clay Science</i> , 2020 , 193, 105658	5.2	5
204	Thermogravimetric analysis of layered double hydroxides intercalated with sulfate and alkaline cations [M62+Al3(OH)18][A+(SO4)2] 12H2O (M2+ = Mn, Mg, Zn; A+ = Li, Na, K). <i>Journal of Thermal Analysis and Calorimetry</i> , 2020 , 140, 1715-1723	4.1	3
203	Adsorption of an iron(III)porphyrin onto a 2:1 Zn/Al-CO3 layered double hydroxide and its use as an oxidation catalyst with different counter ions: An experimental and DFT study. <i>Applied Clay Science</i> , 2020 , 185, 105410	5.2	4
202	Thermal and flammability properties influenced by Zn/Al, Co/Al, and Ni/Al layered double hydroxide in low-density polyethylene nanocomposites. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48737	2.9	5
201	Synthesis and characterization of gordaite, osakaite and simonkolleite by different methods: Comparison, phase interconversion, and potential corrosion protection applications. <i>Journal of Solid State Chemistry</i> , 2020 , 291, 121595	3.3	4
200	Composites of polyethylene and layered cobalt hydroxide salts as potential ultraviolet radiation absorbers. <i>Polymer Bulletin</i> , 2020 , 77, 255-273	2.4	4

199	Zinc-Layered Hydroxide Salt Intercalated with Molybdate Anions as a New Smart Nanocontainer for Active Corrosion Protection of Carbon Steel. <i>ACS Applied Materials & District Active Steel</i> , 12, 19823-19820-19820-19820-19820-19820-19820-19820-19820-19820-19820-19820-19820-19820-19820-1982	9833	20	
198	Selective synthesis of monolaurin catalyzed by layered zinc laurate. <i>Reaction Kinetics, Mechanisms</i> and Catalysis, 2019 , 128, 779-791	1.6		
197	Comparison between catalytic activities of two zinc layered hydroxide salts in brilliant green organic dye bleaching. <i>Journal of Colloid and Interface Science</i> , 2019 , 541, 425-433	9.3	12	
196	Potential Sustainable Slow-Release Fertilizers Obtained by Mechanochemical Activation of MgAl and MgFe Layered Double Hydroxides and KHPO[]Nanomaterials, 2019 , 9,	5.4	13	
195	Converting Mn/Al layered double hydroxide anion exchangers into cation exchangers by topotactic reactions using alkali metal sulfate solutions. <i>Chemical Communications</i> , 2019 , 55, 7824-7827	5.8	17	
194	Microwave-irradiated acetylation of glycerol catalyzed by acid activated clays. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2019 , 127, 991-1004	1.6	7	
193	Investigation of benzophenone adsolubilized into Zn3Al-LDH intercalated with dodecylsulfate by DFT calculations. <i>Applied Clay Science</i> , 2019 , 179, 105153	5.2	3	
192	Synthesis of Malic Acid on Montmorillonite K10: A Langmuir Hinshelwood Kinetic Study. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 9257-9265	3.9	7	
191	Rheological properties of low-density polyethylene filled with hydrophobic Co(Ni)-Al layered double hydroxides. <i>Polimeros</i> , 2019 , 29,	1.6	1	
190	DFT Study of Layered Double Hydroxides with Cation Exchange Capacity: (A+(H2O)6)[M62+Al3(OH)18(SO4)2][6H2O (M2+ = Mg, Zn and A+ = Na, K). <i>Journal of Physical Chemistry C</i> , 2019 , 123, 9838-9845	3.8	10	
189	Nanocomposites of polyethylene and ternary (Mg + Zn/Al) layered double hydroxide modified with an organic UV absorber. <i>Journal of Polymer Research</i> , 2019 , 26, 1	2.7	4	
188	Synthesis, characterization, thermal behavior and exchange reactions of new phases of layered double hydroxides with the chemical composition [M+26Al3(OH)18(SO4)2].(A(H2O)6).6H2O (M+2 = Co, Ni; A = Li+, Na+, K+). <i>Applied Clay Science</i> , 2019 , 181, 105217	5.2	10	
187	Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. <i>Enzyme and Microbial Technology</i> , 2019 , 130, 109365	3.8	13	
186	PRELIMINARY ASSESSMENT OF THE PROCESSING OF HIGH-ACIDITY FATTY MATERIALS USING SOLID CATALYSTS FOR THE OBTAINMENT OF FATTY ACID METHYL ESTERS. <i>Brazilian Journal of Chemical Engineering</i> , 2019 , 36, 1535-1551	1.7	1	
185	Effect of layered hydroxide salts, produced by two different methods, on the mechanical and thermal properties of poly(methyl methacrylate). <i>Polymer Engineering and Science</i> , 2019 , 59, 1065-1074	2.3	3	
184	Layered clay minerals, synthetic layered double hydroxides and hydroxide salts applied as pickering emulsifiers. <i>Applied Clay Science</i> , 2019 , 169, 10-20	5.2	37	
183	Cation Exchange Reactions in Layered Double Hydroxides Intercalated with Sulfate and Alkaline Cations (A(HO))[MAl(OH)(SO)][6HO (M = Mn, Mg, Zn; A = Li, Na, K). <i>Journal of the American Chemical Society</i> , 2019 , 141, 531-540	16.4	36	
182	Pickering emulsions formation using kaolinite and Brazil nut oil: particle hydrophobicity and oil self emulsion effect. <i>Journal of Dispersion Science and Technology</i> , 2018 , 39, 901-910	1.5	9	

181	A Preliminary Investigation Concerning Metal Oxides as Catalysts for Esterification of Lauric Acid with Isopropanol. <i>Chemistry and Chemical Technology</i> , 2018 , 12, 158-166	0.9	
180	Oxidation catalyst obtained by the immobilization of layered double hydroxide/Mn(iii) porphyrin on monodispersed silica spheres. <i>Dalton Transactions</i> , 2018 , 47, 3068-3073	4.3	12
179	Mechanochemical conversion of chrysotile/KHPO mixtures into potential sustainable and environmentally friendly slow-release fertilizers. <i>Journal of Environmental Management</i> , 2018 , 206, 962-	- <i>97</i> 0	13
178	Fabrication of ZnO-Zn2TiO4 nanocomposite from zinc hydroxide nitrate and its photocatalytic efficiency. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 353, 46-52	4.7	10
177	Potential Slow Release Fertilizers and Acid Soil Conditioners Obtained by One-Pot Mechanochemical Activation of Chrysotile:Cement Roofing Sheets with K2HPO4. <i>Journal of the Brazilian Chemical Society</i> , 2018 ,	1.5	2
176	From polymers to clay polymer nanocomposites. <i>Developments in Clay Science</i> , 2018 , 9, 331-359		8
175	Investigation of the initial stages of the montmorillonite acid-activation process using DFT calculations. <i>Applied Clay Science</i> , 2018 , 165, 170-178	5.2	9
174	Immobilization of a cationic manganese(III) porphyrin on lithium gordaite (LiZn4(OH)6(SO4)Cl[6H2O), a layered hydroxide salt with cation exchange capacity. <i>Applied Clay Science</i> , 2017 , 139, 108-111	5.2	10
173	Ab initio simulations of the intercalation of iron(III) porphyrinates in Zn2Al-LDH: Structural analysis and evaluation of their basic and acid sites. <i>Applied Clay Science</i> , 2017 , 143, 220-226	5.2	6
172	Structural and thermodynamic investigation of the hydration-dehydration process of Na +-Montmorillonite using DFT calculations. <i>Applied Clay Science</i> , 2017 , 143, 212-219	5.2	17
171	Synthesis, cation exchange and dehydration/rehydration of sodium gordaite: NaZn 4 (OH) 6 (SO 4)Cl[6H 2 O. <i>Applied Clay Science</i> , 2017 , 146, 100-105	5.2	13
170	DFT study of the intercalation of layered double hydroxides and layered hydroxide salts with dodecylsulfate and dodecylbenzene sulfonate: Exfoliation and hydration properties. <i>Applied Clay Science</i> , 2017 , 143, 107-114	5.2	17
169	Design and Kinetic Study of Sustainable Potential Slow-Release Fertilizer Obtained by Mechanochemical Activation of Clay Minerals and Potassium Monohydrogen Phosphate. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 708-716	3.9	30
168	Kinetics evaluation of the ethyl esterification of long chain fatty acids using commercial montmorillonite K10 as catalyst. <i>Fuel</i> , 2017 , 193, 265-274	7.1	26
167	Enhancement of Mechanical and Thermal Properties of Poly(L-lactide) Nanocomposites Filled with Synthetic Layered Compounds. <i>International Journal of Polymer Science</i> , 2017 , 2017, 1-8	2.4	1
166	Synthesis of Layered Disodium (or Dipotassium) Tetrakis-(octanoate-o)-Zinc(II) and Preliminary Investigation of the Catalytic Activity in the Esterification of Octanoic Acid with Isopropanol. <i>Kinetics and Catalysis</i> , 2017 , 58, 726-733	1.5	
165	DFT-based calculations of the adsorptions of acetic acid, triacetin, methanol and the alkoxide formation on the surfaces of zinc acetate. <i>Molecular Catalysis</i> , 2017 , 440, 43-49	3.3	7
164	Unusual catalytic activity after simultaneous immobilization of two metalloporphyrins on hydrozincite/nanocrystalline anatase. <i>Journal of Catalysis</i> , 2017 , 352, 442-451	7.3	10

(2015-2017)

163	Rice Husk Ash as Raw Material for the Synthesis of Silicon and Potassium Slow-Release Fertilizer. Journal of the Brazilian Chemical Society, 2017 ,	1.5	3
162	New Alternative to Produce Colored Polymer Nanocomposites: Organophilic Ni/Al and Co/Al Layered Double Hydroxide as Fillers into Low-Density Polyethylene. <i>Journal of the Brazilian Chemical Society</i> , 2017 ,	1.5	3
161	Biodiesel: Raw Materials, Production Technologies and Fuel Properties. <i>Revista Virtual De Quimica</i> , 2017 , 9, 317-369	1.3	23
160	Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions. <i>Journal of Solid State Chemistry</i> , 2016 , 243, 136-145	3.3	21
159	General Assessment of the Currently Available Biodiesel Production Technologies. <i>Green Energy and Technology</i> , 2016 , 291-326	0.6	
158	MAS NMR and EPR study of structural changes in talc and montmorillonite induced by grinding. <i>Clay Minerals</i> , 2016 , 51, 69-80	1.3	19
157	. IEEE Electrical Insulation Magazine, 2016 , 32, 21-27	2.1	1
156	Intercalation of indigo carmine anions into zinc hydroxide salt: A novel alternative blue pigment. <i>Dyes and Pigments</i> , 2016 , 128, 158-164	4.6	25
155	Intercalation of Molybdate Ions into Ni/Zn Layered Double Hydroxide Salts: Synthesis, Characterization, and Preliminary Catalytic Activity in Methyl Transesterification of Soybean Oil. <i>Journal of the Brazilian Chemical Society</i> , 2016 ,	1.5	3
154	Layered double hydroxides as fillers in poly(l-lactide) nanocomposites, obtained by in situ bulk polymerization. <i>Polimeros</i> , 2016 , 26, 106-114	1.6	9
153	Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results. <i>Molecules</i> , 2016 , 21, 291	4.8	38
152	Selective oxidation catalysts obtained by immobilization of iron(III) porphyrins on thiosalicylic acid-modified Mg-Al layered double hydroxides. <i>Journal of Colloid and Interface Science</i> , 2016 , 478, 374-	-83 ³	17
151	Density, refractive index and viscosity as content monitoring tool of acylglycerols and fatty acid methyl esters in the transesterification of soybean oil. <i>Analytical Methods</i> , 2016 , 8, 5619-5627	3.2	8
150	Kinetics of ethylic esterification of lauric acid on acid activated montmorillonite (STx1-b) as catalyst. <i>Fuel</i> , 2016 , 181, 600-609	7.1	11
149	Na+ as a probe to structural investigation of dehydrated smectites using NMR spectra calculated by DFT. <i>Applied Clay Science</i> , 2016 , 126, 132-140	5.2	13
148	A theoretical study of a homologous series of zinc n-alkanoates (2 IhC IB): Structural analysis, evaluation of their interactions and monofilm formation. <i>Chemical Physics Letters</i> , 2015 , 636, 154-162	2.5	4
147	Heterogeneous oxidation of the dye Brilliant Green with H 2 O 2 catalyzed by supported manganese porphyrins. <i>Journal of Molecular Catalysis A</i> , 2015 , 408, 123-131		20
146	Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate. <i>Bioresource Technology</i> , 2015 , 193, 337-44	11	16

145	Galactodendritic porphyrinic conjugates as new biomimetic catalysts for oxidation reactions. <i>Inorganic Chemistry</i> , 2015 , 54, 4382-93	5.1	26
144	Manganese chlorins immobilized on silica as oxidation reaction catalysts. <i>Journal of Colloid and Interface Science</i> , 2015 , 450, 339-352	9.3	6
143	Esterification of fatty acids with ethanol over layered zinc laurate and zinc stearate [Kinetic modeling. <i>Fuel</i> , 2015 , 153, 445-454	7.1	21
142	Solid-state mechanochemical activation of clay minerals and soluble phosphate mixtures to obtain slow-release fertilizers. <i>Clay Minerals</i> , 2015 , 50, 153-162	1.3	28
141	Selective Oxidation Catalysts Obtained by the Immobilization of Iron (III) Porphyrins on Layered Hydroxide Salts 2015 , 6526-6542		1
140	NanocompEitos de poli(Ecool vinEco) contendo materiais hBridos mimetizando o pigmento Azul Maya. <i>Polimeros</i> , 2015 , 25, 77-88	1.6	
139	Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer. <i>Materials Research Bulletin</i> , 2015 , 70, 336-342	5.1	16
138	Theoretical study of the anion exchange properties and the thermal decomposition of Zn5(OH)8(NO3)22H2O and Zn5(OH)8(NO3)22NH3. <i>Applied Clay Science</i> , 2015 , 114, 103-111	5.2	15
137	Synthesis of new metalloporphyrin derivatives from [5,10,15,20-tetrakis (pentafluorophenyl)porphyrin] and 4-mercaptobenzoic acid for homogeneous and heterogeneous catalysis. <i>Applied Catalysis A: General</i> , 2015 , 503, 9-19	5.1	27
136	Applications of Heterogeneous Catalysts in the Production of Biodiesel by Esterification and Transesterification 2014 , 255-276		6
135	Kinetics of non-catalytic and ZnL2-catalyzed esterification of lauric acid with ethanol. <i>Fuel</i> , 2014 , 117, 125-132	7.1	23
134	Glycol metalloporphyrin derivatives in solution or immobilized on LDH and silica: synthesis, characterization and catalytic features in oxidation reactions. <i>Catalysis Science and Technology</i> , 2014 , 4, 129-141	5.5	30
133	Bioactive nanocomposites of bacterial cellulose and natural hydrocolloids. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7034-7044	7.3	19
132	The Use of Acid-Activated Montmorillonite as a Solid Catalyst for the Production of Fatty Acid Methyl Esters. <i>Energy & Energy & </i>	4.1	13
131	Similarities between Zinc Hydroxide Chloride Monohydrate and Its Dehydrated Form: A Theoretical Study of Their Structures and Anionic Exchange Properties. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 19106-19113	3.8	22
130	Anionic Iron(III) Porphyrin Immobilized on/into Exfoliated Macroporous Layered Double Hydroxides as Catalyst for Oxidation Reactions. <i>Journal of the Brazilian Chemical Society</i> , 2014 ,	1.5	4
129	Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene. <i>Polimeros</i> , 2014 , 24, 673-682	1.6	12
128	Pulsed hydrostatic pressure and ultrasound assisted extraction of soluble matter from mate leaves (Ilex paraguariensis): Experiments and modeling. <i>Separation and Purification Technology</i> , 2014 , 132, 1-9	8.3	12

127	Hidr⊠idos duplos lamelares como matrizes para fertilizantes de libera ö lenta de nitrato. <i>Revista Brasileira De Ciencia Do Solo</i> , 2014 , 38, 272-277	1.5	7	
126	Liberaß de nitrato de hidr¤idos duplos lamelares como potenciais fertilizantes de liberaß lenta. <i>Revista Brasileira De Ciencia Do Solo</i> , 2014 , 38, 821-830	1.5	9	
125	NanocompEitos polimEicos de polietileno de alta densidade contendo hidrEidos duplos lamelares intercalados com anions derivados de corantes azo. <i>Polimeros</i> , 2014 , 24, 332-343	1.6	3	
124	Synthetic zinc layered hydroxide salts intercalated with anionic azo dyes as fillers into high-density polyethylene composites: first insights. <i>Journal of Polymer Research</i> , 2013 , 20, 1	2.7	25	
123	Zinc Monoglycerolate as Highly Active and Reusable Catalyst in the Methyl Transesterification of Refined Soybean Oil. <i>Catalysis Letters</i> , 2013 , 143, 1235-1239	2.8	5	
122	Formation reaction mechanisms of hydroxide anions from Mg(OH)2 layers. <i>Chemical Physics</i> , 2013 , 418, 1-7	2.3	7	
121	Cationic and anionic metalloporphyrins simultaneously immobilized onto raw halloysite nanoscrolls catalyze oxidation reactions. <i>Applied Catalysis A: General</i> , 2013 , 460-461, 124-131	5.1	23	
120	Layered double hydroxides intercalated with anionic surfactants/benzophenone as potential materials for sunscreens. <i>Journal of Colloid and Interface Science</i> , 2013 , 397, 88-95	9.3	39	
119	Acid-activated montmorillonites as heterogeneous catalysts for the esterification of lauric acid acid with methanol. <i>Applied Clay Science</i> , 2013 , 80-81, 236-244	5.2	60	
118	Iron(III) porphyrin supported on metahalloysite: an efficient and reusable catalyst for oxidation reactions. <i>Catalysis Science and Technology</i> , 2013 , 3, 1094	5.5	27	
117	Poly(vinyl alcohol) nanocomposite films containing chemically exfoliated molybdenum disulfide. <i>Materials Chemistry and Physics</i> , 2013 , 137, 764-771	4.4	17	
116	Esterification of Fatty Acids Using a Bismuth-Containing Solid Acid Catalyst. <i>Energy & amp; Fuels</i> , 2013 , 27, 2218-2225	4.1	12	
115	Effect of Layered Double Hydroxides on the Mechanical, Thermal, and Fire Properties of Poly(methyl methacrylate) Nanocomposites. <i>Advances in Polymer Technology</i> , 2013 , 32, E660-E674	1.9	9	
114	Phosphor Dysprosium-Doped Layered Double Hydroxides Exchanged with Different Organic Functional Groups. <i>Journal of Nanomaterials</i> , 2013 , 2013, 1-8	3.2	7	
113	Catalysts for heterogeneous oxidation reaction based on metalloporphyrins immobilized on kaolinite modified with triethanolamine. <i>Journal of Colloid and Interface Science</i> , 2012 , 374, 278-86	9.3	18	
112	Immobilization of anionic iron(III) porphyrins onto in situ obtained zinc oxide. <i>Journal of Colloid and Interface Science</i> , 2012 , 377, 379-86	9.3	19	
111	Colorful and transparent poly(vinyl alcohol) composite films filled with layered zinc hydroxide salts, intercalated with anionic orange azo dyes (methyl orange and orange II). <i>Materials Chemistry and Physics</i> , 2012 , 134, 392-398	4.4	19	
110	Synergetic effect of LDH and glass fiber on the properties of two- and three-component epoxy composites. <i>Polymer Testing</i> , 2012 , 31, 741-747	4.5	24	

109	Synthesis and characterization of LDHs/PMMA nanocomposites: Effect of two different intercalated anions on the mechanical and thermal properties. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 1764-1770	2.9	14
108	Alkaline earth layered benzoates as reusable heterogeneous catalysts for the methyl esterification of benzoic acid. <i>Quimica Nova</i> , 2012 , 35, 1510-1516	1.6	5
107	Layered metal laurates as active catalysts in the methyl/ethyl esterification reactions of lauric acid. Journal of the Brazilian Chemical Society, 2012, 23, 39-45	1.5	23
106	Montmorilonita modificada como catalisador heterogñeo em realis de esterificali (m)etlica de lido lurico. <i>Quimica Nova</i> , 2012 , 35, 1711-1718	1.6	13
105	In situ synthesis, morphology, and thermal properties of polystyrene MgAl layered double hydroxide nanocomposites. <i>Polymer Engineering and Science</i> , 2012 , 52, 1754-1760	2.3	15
104	LDHs Instability in Esterification Reactions and Their Conversion to Catalytically Active Layered Carboxylates. <i>Catalysis Letters</i> , 2012 , 142, 763-770	2.8	13
103	Anionic iron(III) porphyrins immobilized on zinc hydroxide chloride as catalysts for heterogeneous oxidation reactions. <i>Applied Catalysis A: General</i> , 2012 , 413-414, 94-102	5.1	33
102	The Effect of the Addition of Mg-Al LDH Intercalated with Dodecyl Sulfate on the Fire Retardancy Properties of Epoxy. <i>Macromolecular Symposia</i> , 2012 , 319, 129-135	0.8	5
101	Acid activated montmorillonite as catalysts in methyl esterification reactions of lauric acid. <i>Journal of Oleo Science</i> , 2012 , 61, 497-504	1.6	33
100	Avaliaß da natureza da atividade catallica de compostos de bismuto em reales de metanlise do leo de soja. <i>Quimica Nova</i> , 2012 , 35, 108-113	1.6	3
99	Raw halloysite as reusable heterogeneous catalyst for esterification of lauric acid. <i>Applied Clay Science</i> , 2011 , 51, 165-169	5.2	98
98	Mechanical and flame-retardant properties of epoxy/MgAl LDH composites. <i>Composites Part A:</i> Applied Science and Manufacturing, 2011 , 42, 196-202	8.4	119
97	The effect of steam explosion on the production of sugarcane bagasse/polyester composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2011 , 42, 364-370	8.4	42
96	Study of thermal and mechanical properties of PMMA/LDHs nanocomposites obtained by in situ bulk polymerization. <i>Composites Part A: Applied Science and Manufacturing</i> , 2011 , 42, 1025-1030	8.4	38
95	Effect of confinement of anionic organic ultraviolet ray absorbers into two-dimensional zinc hydroxide nitrate galleries. <i>Journal of the Brazilian Chemical Society</i> , 2011 , 22, 1183-1191	1.5	11
94	Sätese e caracterizaḃ de Nanocomp§itos Esfoliados de Poliestireno: Hidr⊠ido Duplo Lamelar via polimerizaḃ in situ. <i>Polimeros</i> , 2011 , 21, 34-38	1.6	19
93	Catalisadores heterogüeos para a produ ö de monoüteres graxos (biodiesel). <i>Quimica Nova</i> , 2011 , 34, 477-486	1.6	33
92	Esterification of Free Fatty Acids Using Layered Carboxylates and Hydroxide Salts as Catalysts. <i>Topics in Catalysis</i> , 2011 , 54, 474-481	2.3	9

(2009-2011)

91	PVA nanocomposites reinforced with Zn2Al LDHs, intercalated with orange dyes. <i>Journal of Solid State Electrochemistry</i> , 2011 , 15, 303-311	2.6	25
90	Theoretical estimates of the IR spectrum of formamide intercalated into kaolinite. <i>International Journal of Quantum Chemistry</i> , 2011 , 111, 2137-2148	2.1	10
89	Nanocomposites Based on Starch and Fibers of Natural Origin 2011 , 471-509		1
88	Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: Effect of enzymatic treatment on mechanical properties. <i>Carbohydrate Polymers</i> , 2010 , 80, 866-873	10.3	82
87	Immobilization of anionic metalloporphyrins on zinc hydroxide nitrate and study of an unusual catalytic activity. <i>Journal of Catalysis</i> , 2010 , 274, 130-141	7.3	63
86	New oxidation catalysts based on iron(III) porphyrins immobilized on MgAl layered double hydroxides modified with triethanolamine. <i>Applied Catalysis A: General</i> , 2010 , 386, 51-59	5.1	36
85	Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate. <i>Journal of Colloid and Interface Science</i> , 2010 , 347, 49-55	9.3	70
84	Effect of adsorbed/intercalated anionic dyes into the mechanical properties of PVA: layered zinc hydroxide nitrate nanocomposites. <i>Journal of Colloid and Interface Science</i> , 2010 , 351, 384-91	9.3	42
83	Reversible intercalation of ammonia molecules into a layered double hydroxide structure without exchanging nitrate counter-ions. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2324-2328	3.3	11
82	Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. <i>Carbohydrate Polymers</i> , 2010 , 80, 130-138	10.3	113
81	Nanocomposites: synthesis, structure, properties and new application opportunities. <i>Materials Research</i> , 2009 , 12, 1-39	1.5	802
80	Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. <i>Industrial Crops and Products</i> , 2009 , 30, 407-415	5.9	231
79	Evidence of weathering stages of phyllosilicates from biotite/muscovite to kaolinite, probed by EPR spectroscopy. <i>Mineralogy and Petrology</i> , 2009 , 97, 139-144	1.6	11
78	Immobilization of enzymatic extract from Penicillium camemberti with lipoxygenase activity onto a hybrid layered double hydroxide. <i>Biochemical Engineering Journal</i> , 2009 , 48, 93-98	4.2	9
77	Theoretical estimates of the IR spectrum of water intercalated into kaolinite. <i>International Journal of Quantum Chemistry</i> , 2009 , 109, 594-604	2.1	6
76	Nanocomposites coated with xyloglucan for drug delivery: In vitro studies. <i>International Journal of Pharmaceutics</i> , 2009 , 367, 204-10	6.5	49
75	Immobilization of anionic iron(III) porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions. <i>Journal of Molecular Catalysis A</i> , 2009 , 310, 42-50		55
74	Intercalation of an oxalatooxoniobate complex into layered double hydroxide and layered zinc hydroxide nitrate. <i>Journal of Colloid and Interface Science</i> , 2009 , 330, 352-8	9.3	51

73	New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA). <i>Journal of Colloid and Interface Science</i> , 2009 , 330, 303-9	9.3	79
72	Zn2Al layered double hydroxides intercalated and adsorbed with anionic blue dyes: a physico-chemical characterization. <i>Journal of Colloid and Interface Science</i> , 2009 , 333, 120-7	9.3	67
71	Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. <i>Journal of Colloid and Interface Science</i> , 2009 , 338, 474-9	9.3	77
70	Biodegradable composites based on lignocellulosic fibers A n overview. <i>Progress in Polymer Science</i> , 2009 , 34, 982-1021	29.6	887
69	Studies of the effect of molding pressure and incorporation of sugarcane bagasse fibers on the structure and properties of poly (hydroxy butyrate). <i>Composites Part A: Applied Science and Manufacturing</i> , 2009 , 40, 573-582	8.4	40
68	Immobilization of laccase on hybrid layered double hydroxide. <i>Quimica Nova</i> , 2009 , 32, 1495-1499	1.6	18
67	Synthesis, characterization, and catalytic activity of anionic iron(III) porphyrins intercalated into layered double hydroxides. <i>Journal of Catalysis</i> , 2008 , 257, 233-243	7.3	91
66	A new zinc hydroxide nitrate heterogeneous catalyst for the esterification of free fatty acids and the transesterification of vegetable oils. <i>Catalysis Communications</i> , 2008 , 9, 2140-2143	3.2	71
65	Cu2+ ions as a paramagnetic probe to study the surface chemical modification process of layered double hydroxides and hydroxide salts with nitrate and carboxylate anions. <i>Journal of Colloid and Interface Science</i> , 2008 , 320, 238-44	9.3	38
64	Chemical modification of zinc hydroxide nitrate and Zn-Al-layered double hydroxide with dicarboxylic acids. <i>Journal of Colloid and Interface Science</i> , 2008 , 320, 168-76	9.3	69
63	Organic inorganic dye filler for polymer: blue-coloured layered double hydroxides into polystyrene. <i>Journal of Colloid and Interface Science</i> , 2008 , 326, 366-73	9.3	56
62	Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions. <i>Journal of Molecular Catalysis A</i> , 2008 , 283, 99-107		125
61	Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique. <i>American Mineralogist</i> , 2008 , 93, 844-852	2.9	16
60	Layered hydroxide salts: Synthesis, properties and potential applications. <i>Solid State Ionics</i> , 2007 , 178, 1143-1162	3.3	2 70
59	Use of Fe(3+) ion probe to study the stability of urea-intercalated kaolinite by electron paramagnetic resonance. <i>Journal of Colloid and Interface Science</i> , 2007 , 313, 537-41	9.3	36
58	Nanofibrous and nanotubular supports for the immobilization of metalloporphyrins as oxidation catalysts. <i>Journal of Colloid and Interface Science</i> , 2007 , 315, 142-57	9.3	38
57	Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. <i>Composites Part A: Applied Science and Manufacturing</i> , 2007 , 38, 1694-1709	8.4	404
56	Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photoelectron spectroscopy. <i>Journal of Colloid and Interface Science</i> , 2006 , 295, 135-40	9.3	20

(2003-2006)

55	Immobilization of iron porphyrins in tubular kaolinite obtained by an intercalation/delamination procedure. <i>Journal of Catalysis</i> , 2006 , 242, 110-117	7.3	59
54	Catalytic activity in oxidation reactions of anionic iron(III) porphyrins immobilized on raw and grafted chrysotile. <i>Journal of the Brazilian Chemical Society</i> , 2006 , 17, 1672-1678	1.5	38
53	Catalytic activity of anionic iron(III) porphyrins immobilized on grafted disordered silica obtained from acidic leached chrysotile. <i>Journal of Molecular Catalysis A</i> , 2006 , 243, 44-51		63
52	First insight into catalytic activity of anionic iron porphyrins immobilized on exfoliated layered double hydroxides. <i>Journal of Colloid and Interface Science</i> , 2005 , 281, 417-23	9.3	71
51	Intercalation and functionalization of zinc hydroxide nitrate with mono- and dicarboxylic acids. <i>Journal of Colloid and Interface Science</i> , 2005 , 283, 130-8	9.3	52
50	Synthesis and characterization of disordered layered silica obtained by selective leaching of octahedral sheets from chrysotile and phlogopite structures. <i>Journal of Colloid and Interface Science</i> , 2005 , 283, 107-12	9.3	57
49	Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties. <i>Journal of Colloid and Interface Science</i> , 2005 , 285, 532-43	9.3	99
48	Structural and magnetic properties of Fe and Co nanoparticles embedded in powdered Al2O3. Journal of Colloid and Interface Science, 2005, 289, 63-70	9.3	20
47	Immobilization of iron(III) porphyrins on exfoliated MgAl layered double hydroxide, grafted with (3-aminopropyl)triethoxysilane. <i>Journal of Catalysis</i> , 2005 , 234, 431-437	7.3	58
46	Dynamic rheological properties of Yam starch/hectorite composite gels. <i>Polymer International</i> , 2005 , 54, 814-822	3.3	10
45	Intercala B e funcionaliza B da brucita com Bidos carboxlicos. <i>Quimica Nova</i> , 2005 , 28, 24-29	1.6	10
44	Chemical Modification of Clay Surfaces. Interface Science and Technology, 2004, 1-56	2.3	7
43	Electrochemical intercalation of hydrated cations derived from primary amines into 2H-NbS2. Journal of Solid State Electrochemistry, 2004 , 8, 511-519	2.6	1
42	Grafting of phenylarsonic and 2-nitrophenol-4-arsonic acid onto disordered silica obtained by selective leaching of brucite-like sheet from chrysotile structure. <i>Journal of Colloid and Interface Science</i> , 2004 , 276, 167-73	9.3	23
41	Anionic iron(III) porphyrin immobilized on silanized kaolinite as catalyst for oxidation reactions. Journal of Molecular Catalysis A, 2004 , 217, 121-131		62
40	Encapsulation of Fe(III) and Cu(II) complexes in NaY zeolite. <i>Journal of Colloid and Interface Science</i> , 2004 , 277, 138-45	9.3	26
39	Remediation of phenol, lignin and paper effluents by advanced oxidative processes. <i>Environmental Technology (United Kingdom)</i> , 2004 , 25, 1331-9	2.6	11
38	Comportamento tfimico da caulinita hidratada. <i>Quimica Nova</i> , 2003 , 26, 30-35	1.6	30

37	Exfoliation and immobilization of anionic iron porphyrin in layered double hydroxides. <i>Journal of Colloid and Interface Science</i> , 2003 , 264, 203-7	9.3	55
36	Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. <i>Bioresource Technology</i> , 2003 , 86, 105-15	11	121
35	The influence of layered compounds on the properties of starch/layered compound composites. <i>Polymer International</i> , 2003 , 52, 1035-1044	3.3	66
34	Starch films reinforced with mineral clay. <i>Carbohydrate Polymers</i> , 2003 , 52, 101-110	10.3	325
33	Covalent grafting of phenylphosphonate groups onto layered silica derived from in situ-leached chrysotile fibers. <i>Journal of Materials Chemistry</i> , 2003 , 13, 304-307		36
32	Microstructure and magnetism of Fe nanoparticles embedded in Al2O3´ZnO matrix. <i>Journal Physics D: Applied Physics</i> , 2003 , 36, 428-433	3	8
31	Vanadium(II)-diamine complexes: synthesis, UV-Visible, infrared, thermogravimetry, magnetochemistry and INDO/S characterisation. <i>Journal of the Brazilian Chemical Society</i> , 2003 , 14,	1.5	5
30	Dissulfeto de molibdñio, um material multifuncional e surpreendente. <i>Quimica Nova</i> , 2002 , 25, 83-88	1.6	8
29	Structural and Morphological Characterization of the PP-0559 Kaolinite from the Brazilian Amazon Region. <i>Journal of the Brazilian Chemical Society</i> , 2002 , 13, 270-275	1.5	26
28	Paramagnetic anisotropy of a natural kaolinite and its modification by chemical reduction. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 241, 422-429	2.8	6
27	Study of the catalytic behavior of montmorillonite/iron(III) and Mn(III) cationic porphyrins. <i>Journal of Colloid and Interface Science</i> , 2002 , 254, 158-64	9.3	64
26	Covalent grafting of ethylene glycol and glycerol into brucite. <i>Journal of Colloid and Interface Science</i> , 2002 , 253, 180-4	9.3	22
25	Synthesis, characterization and catalytic behavior of iron porphyrins immobilized in layered double hydroxides. <i>Journal of Porphyrins and Phthalocyanines</i> , 2002 , 06, 502-513	1.8	34
24	Preparation of a New Nanocomposite of Al0.33Mg0.67(OH)2(C12H25SO4)0.33 and Poly(ethylene oxide). <i>Langmuir</i> , 2002 , 18, 5967-5970	4	55
23	Modification of the Interlayer Surface of Layered Copper(II) Hydroxide Acetate with Benzoate Groups: Submicrometer Fiber Generation. <i>Journal of Colloid and Interface Science</i> , 2001 , 240, 245-251	9.3	12
22	Effect of Na2CO3 on the photocatalytic degradation of remazol brilliant blue R. <i>Toxicological and Environmental Chemistry</i> , 2001 , 80, 83-93	1.4	8
21	Esfolia® e hidrata® da caulinita ap® intercala® com urla. <i>Quimica Nova</i> , 2001 , 24, 761	1.6	34
20	Intercalation of Benzamide into Kaolinite. <i>Journal of Colloid and Interface Science</i> , 2000 , 221, 284-290	9.3	44

19	Covalent Grafting of Ethylene Glycol into the Zn-Al-CO(3) Layered Double Hydroxide. <i>Journal of Colloid and Interface Science</i> , 2000 , 227, 445-451	9.3	64
18	Criterious preparation and characterization of earthworm-composts in view of animal waste recycling. Part I. Correlation between chemical, thermal and FTIR spectroscopic analyses of four humic acids from earthworm-composted animal manure. <i>Journal of the Brazilian Chemical Society</i> ,	1.5	13
17	Mechanical properties of niobium disulfide and its hydrated sodium cation intercalation compound. Journal of Materials Research, 2000 , 15, 2061-2064	2.5	6
16	Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO. <i>Chemosphere</i> , 2000 , 40, 427-32	8.4	140
15	Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. <i>Chemosphere</i> , 2000 , 40, 433-40	8.4	411
14	Preparation and Characterization of a Kaolinite-1-methyl-2-Pyrrolidone Intercalation Compound. Journal of Colloid and Interface Science, 1999 , 211, 137-141	9.3	36
13	Intercalation of Hexylamine into Hydrated Kaolinite Phenylphosphonate. <i>Journal of Colloid and Interface Science</i> , 1999 , 218, 211-216	9.3	5
12	Electron Diffraction Study of Intercalation Compounds Derived from 1T-MoS2. <i>Journal of Solid State Chemistry</i> , 1999 , 144, 430-436	3.3	56
11	Covalent Grafting of Phenylphosphonate Groups onto the Interlamellar Aluminol Surface of Kaolinite. <i>Journal of Colloid and Interface Science</i> , 1998 , 206, 281-287	9.3	51
10	Scanning Tunneling Microscopic Investigation of 1T-MoS2. <i>Chemistry of Materials</i> , 1998 , 10, 723-727	9.6	80
9	Sfitese e caracteriza l i dos nanocomplitos K0,1(PEO)xMoS2 (X= 0,5; 1,2). <i>Quimica Nova</i> , 1998 , 21, 687-692	1.6	7
8	Scanning tunneling microscopic investigation of Kx(H2O)yMoS2. <i>Surface Science</i> , 1997 , 380, L474-L478	1.8	29
7	Prepara® de nanocomp®itos atrav® do encapsulamento de pol®heros condutores em 2H-MoS2 e 1T-TiS2. <i>Quimica Nova</i> , 1997 , 20, 356	1.6	12
6	A cationic iron(III) porphyrin encapsulated between the layered structure of MoS2. A new approach to the synthesis of an Fe?Mo?S system. <i>Inorganica Chimica Acta</i> , 1997 , 254, 213-217	2.7	15
5	Electrochemical Intercalation of Hydrated Hexilaminium Cations into the Layered Compound 2 H - NbS2. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 2522-2527	3.9	3
4	1T-MoS2, a new metallic modification of molybdenum disulfide. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 1386-1388		323
3	Metastable layered chalcogenides 1T-MoS2, 2M-WS2 and : Electrochemical study on their intercalation reactions. <i>Materials Research Bulletin</i> , 1992 , 27, 545-553	5.1	27
2	Intercalation of anionic organic ultraviolet absorbers in bimetallic and trimetallic layered double hydroxides for low-density polyethylene protection. <i>Polymer Bulletin</i> ,1	2.4	0

Adsorptive removal of Congo red by macroporous ZnO obtained from citrus pectin gelation and reuse as a hybrid pigment. *Particulate Science and Technology*,1-11

2