Yasushi Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070504/publications.pdf

Version: 2024-02-01

78 papers

1,382 citations

³⁹⁴⁴²¹ 19 h-index 34 g-index

94 all docs 94 docs citations 94 times ranked $\begin{array}{c} 1201 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Chiral Binaphthylâ€Based Iodonium Salt (Hypervalent Iodine(III)) as Hydrogen―and Halogenâ€Bonding Bifunctional Catalyst: Insight into Abnormal Counteranion Effect and Asymmetric Synthesis of <i>N</i> , <i>S</i> â€Acetals. Advanced Synthesis and Catalysis, 2022, 364, 1091-1098.	4.3	22
2	Attritionâ€Enhanced Asymmetric Transformation of Axially Chiral Nicotinamides by Dynamic Chiral Salt Formation. ChemPlusChem, 2022, 87, e202100504.	2.8	2
3	Chiral Symmetry Breaking of Monoacylated Anhydroerythritols and <i>meso</i> àê1,2â€Diols through Crystallizationâ€Induced Deracemization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
4	Synthesis and Catalysis of NHC Coordinated Cyclometalated Palladium(II) Complexes with Bridging Hydroxide Ligands. Advanced Synthesis and Catalysis, 2022, 364, 1763-1768.	4.3	7
5	Synthesis of 3-Allylindoles via Annulation of $\langle i \rangle N \langle i \rangle$ -Allyl-2-ethynylaniline Derivatives Using a P,Olefin Type Ligand/Pd(0) Catalyst. Journal of Organic Chemistry, 2022, , .	3. 2	3
6	Behavior of All Chiral Standard Amino Acids for Chiral Symmetry Breaking of $\langle i \rangle p \langle i \rangle$ -Anisoin. Crystal Growth and Design, 2022, 22, 4673-4679.	3.0	2
7	Facile Construction of Benzofulvene Scaffold from Tetraaryl[3]cumulene Through Electrophilic lodocyclization. European Journal of Organic Chemistry, 2021, 2021, 235-238.	2.4	5
8	Phase-transfer catalysed asymmetric synthesis of $\hat{l}\pm$ -chiral tetrasubstituted $\hat{l}\pm$ -aminothioesters. Organic and Biomolecular Chemistry, 2021, 19, 6402-6406.	2.8	2
9	Two-photon excitable boron complex based on tridentate imidazo[1,5- <i>a</i>) pyridine ligand for heavy-atom-free mitochondria-targeted photodynamic therapy. RSC Advances, 2021, 11, 26403-26407.	3.6	5
10	Iminophosphorane-mediated regioselective umpolung alkylation reaction of \hat{l}_{\pm} -iminoesters. Organic and Biomolecular Chemistry, 2021, 19, 4551-4564.	2.8	3
11	Unexpected formation of poly-functionalized fulvenes by the reaction of a tetraaryl[5]cumulene with iodine. Organic and Biomolecular Chemistry, 2021, 19, 7594-7597.	2.8	2
12	Asymmetric Anisoin Synthesis Involving Benzoin Condensation Followed by Deracemization. Crystal Growth and Design, 2021, 21, 2423-2428.	3.0	7
13	Chirogenesis and Amplification of Molecular Chirality Using Optical Vortices. Angewandte Chemie, 2021, 133, 12929-12933.	2.0	5
14	Chirogenesis and Amplification of Molecular Chirality Using Optical Vortices. Angewandte Chemie - International Edition, 2021, 60, 12819-12823.	13.8	23
15	Asymmetric Synthesis of Indoline from Achiral Phthalimide Involving Crystallizationâ€Induced Deracemization. Chemistry - A European Journal, 2021, 27, 16338-16341.	3.3	9
16	Synthesis of D–π–A type benzothiazole–pyridinium salt composite and its application as photo-degradation agent for amyloid fibrils. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128324.	2.2	0
17	Bromonium salts: diaryl-l̂» < sup > 3 < /sup > -bromanes as halogen-bonding organocatalysts. Chemical Communications, 2021, 57, 2519-2522.	4.1	29
18	Chiral Hypervalent Bromine(III) (Bromonium Salt): Hydrogen- and Halogen-Bonding Bifunctional Asymmetric Catalysis by Diaryl-λ < sup > 3 < /sup > -bromanes. ACS Catalysis, 2021, 11, 13028-13033.	11.2	33

#	Article	IF	CITATIONS
19	Chiral Symmetry Breaking of Racemic 3-Phenylsuccinimides via Crystallization-Induced Dynamic Deracemization. Crystal Growth and Design, 2021, 21, 6051-6055.	3.0	9
20	Cinnamoyl amide type chiral P,olefin ligands for Pd-catalyzed reactions. Organic and Biomolecular Chemistry, 2021, 19, 10385-10389.	2.8	4
21	Synthesis and Optical Properties of Quadrupolar Pyridinium Salt and Its Application as Bioimaging Agent. Chemistry Letters, 2020, 49, 1487-1489.	1.3	1
22	A new class of polychlorinated compounds derived from o-chloranil. Tetrahedron Letters, 2020, 61, 152268.	1.4	0
23	Chiral Symmetry Breaking of Thiohydantoins by Attrition-Enhanced Deracemization. Crystal Growth and Design, 2020, 20, 4898-4903.	3.0	15
24	Attrition-Enhanced Deracemization and Absolute Asymmetric Synthesis of Flavanones from Prochiral Precursors. Crystal Growth and Design, 2020, 20, 5676-5681.	3.0	16
25	Two- and three-photon excitable quaternized imidazo[1,2-a]pyridines as mitochondrial imaging and potent cancer therapy agents. Organic and Biomolecular Chemistry, 2020, 18, 7571-7576.	2.8	5
26	Chiral P,Olefin Ligands with Rotamers for Palladium-Catalyzed Asymmetric Allylic Substitution Reactions. Synlett, 2020, 32, .	1.8	2
27	Absolute Asymmetric Synthesis Involving Chiral Symmetry Breaking in Diels–Alder Reaction. Symmetry, 2020, 12, 910.	2.2	19
28	Visible-light-induced oxidative coupling reaction of benzylic amines using iridium(III) complex of pincer type imidazo[1,5-a]pyridine ligand. Tetrahedron Letters, 2020, 61, 151782.	1.4	7
29	Crystallization-induced diastereomer transformation of thiohydantoin derivatives. Tetrahedron, 2020, 76, 131166.	1.9	13
30	Attritionâ€Enhanced Deracemization of Axially Chiral Nicotinamides. European Journal of Organic Chemistry, 2020, 2020, 1001-1005.	2.4	7
31	Absolute Asymmetric Synthesis of an Aspartic Acid Derivative from Prochiral Maleic Acid and Pyridine under Achiral Conditions. Chemistry - an Asian Journal, 2019, 14, 4150-4153.	3.3	16
32	Synthesis of 7â€Allylated Benzofuran Derivatives from <i>oâ€</i> Allyloxyethynylbenzene via Claisen Rearrangement and TBAFâ€Catalyzed Annulation. European Journal of Organic Chemistry, 2019, 2019, 1635-1645.	2.4	7
33	Synthesis and application of P,olefin type axially chiral ligands with <i>sec</i> -alkyl groups. Organic and Biomolecular Chemistry, 2019, 17, 1455-1465.	2.8	20
34	Asymmetric syntheses and applications of planar chiral hypervalent iodine(V) reagents with crown ether backbones. Tetrahedron, 2019, 75, 3840-3849.	1.9	15
35	Chemoselective Catalytic Asymmetric Synthesis of Functionalized Aminals Through the Umpolung Organocascade Reaction of αâ€lmino Amides. Chemistry - an Asian Journal, 2019, 14, 2737-2743.	3.3	7
36	A new class of flavonoids bearing macrocyclic polyethers by stereoselective photochemical cycloaddition reaction. Tetrahedron, 2019, 75, 3911-3916.	1.9	2

#	Article	IF	CITATIONS
37	Chiral Symmetry Breaking of Spiropyrans and Spirooxazines by Dynamic Enantioselective Crystallization. Chemistry - A European Journal, 2019, 25, 9758-9763.	3.3	9
38	Chemo- and Regioselective Asymmetric Synthesis of Cyclic Enamides through the Catalytic Umpolung Organocascade Reaction of α-Imino Amides. Journal of Organic Chemistry, 2019, 84, 7362-7371.	3.2	10
39	Stereoselective Photodimerization of 3-Arylindenones in Solution and in the Solid State. Journal of Organic Chemistry, 2018, 83, 2256-2262.	3.2	10
40	Hydrazoneâ€"Pd-catalyzed direct intermolecular reaction of <i>>o</i> -alkynylphenols with allylic acetates. Organic and Biomolecular Chemistry, 2018, 16, 575-584.	2.8	7
41	Catalytic Markovnikov Hydroboration of Unactivated Terminal Alkenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 55-56.	0.1	1
42	A Facile Synthesis of <i>C</i> ₂ -Symmetric Macrocyclic Polyethers by Photodimerization of Covalently-linked Flavonoid Derivatives. Chemistry Letters, 2018, 47, 160-162.	1.3	1
43	Umpolung cyclization reaction of $\langle i \rangle N \langle i \rangle$ -cinnamoylthioureas in the presence of DBU. Organic and Biomolecular Chemistry, 2018, 16, 7910-7919.	2.8	4
44	<i>N</i> , <i>N</i> , <i>N</i> -Disubstituted Allylic Amine Type Aminophosphines with C(aryl)–N(amine) Bond Axial Chirality: Synthesis and Application to Palladium-Catalyzed Asymmetric Allylic Alkylation with Malonates. Journal of Oleo Science, 2018, 67, 1189-1199.	1.4	4
45	Regio―and Enantioselective Synthesis of αâ€Aminoâ€Ĵ â€Ketoesters Through Catalytic Umpolung Reaction of αâ€Iminoesters with Enones. Advanced Synthesis and Catalysis, 2018, 360, 4142-4146.	4.3	13
46	Asymmetric Diels–Alder Reaction Involving Dynamic Enantioselective Crystallization. Journal of Organic Chemistry, 2018, 83, 9300-9304.	3.2	28
47	Highly efficient blue emission from boron complexes of 1-(o-hydroxyphenyl)imidazo[1,5-a]pyridine. Tetrahedron, 2018, 74, 3728-3733.	1.9	20
48	The second-generation synthesis of BICMAP analogues. Tetrahedron, 2018, 74, 3871-3878.	1.9	1
49	Fluorescent Nâ€Heteroarenes Having Large Stokes Shift and Water Solubility Suitable for Bioimaging. Asian Journal of Organic Chemistry, 2018, 7, 1614-1619.	2.7	16
50	Hydrazone-Palladium Catalyzed Reactions Using Allyl Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 828-837.	0.1	2
51	Synthesis of <i>o</i> â€Allyloxy(ethynyl)benzene Derivatives by Cuâ€Catalyzed Suzuki–Miyauraâ€Type Reaction and Their Transformations into Heterocyclic Compounds. European Journal of Organic Chemistry, 2017, 2017, 2359-2368.	2.4	12
52	Hydrazone–Cuâ€Catalyzed Suzuki–Miyauraâ€Type Reactions of Dibromoalkenes with Arylboronic Acids. European Journal of Organic Chemistry, 2017, 2017, 3612-3619.	2.4	3
53	Asymmetric Synthesis by Using Natural Sunlight under Absolute Achiral Conditions. Chemistry - A European Journal, 2017, 23, 1717-1721.	3.3	22
54	Organocatalytic Highly Regio―and Enantioselective Umpolung Michael Addition Reaction of αâ€ŀmino Esters. Chemistry - A European Journal, 2017, 23, 12749-12753.	3.3	19

#	Article	IF	CITATIONS
55	Asymmetric Synthesis Involving Reversible Photodimerization of a Prochiral Flavonoid Followed by Crystallization. European Journal of Organic Chemistry, 2017, 2017, 6878-6881.	2.4	10
56	Synthesis of Dimeric Imidazo $[1,\hat{a}\in\%5\hat{a}\in\$ i>apyridines and Their Photophysical Properties. ChemistrySelect, 2017, 2, 10694-10698.	1.5	9
57	Palladium-Catalyzed Mizoroki-Heck Reaction of Aryl Iodides with Allyl Aryl Ethers Using Imidazo[1, 5- <i>a</i>)]pyridines. ChemistrySelect, 2017, 2, 10143-10145.	1.5	6
58	Asymmetric Synthesis Using Crystal Chirality. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 509-521.	0.1	3
59	Asymmetric Synthesis of an Amino Acid Derivative from Achiral Aroyl Acrylamide by Reversible Michael Addition and Preferential Crystallization. Chemistry - A European Journal, 2016, 22, 16429-16432.	3.3	17
60	Hydrazone–palladium catalyzed annulation of 1-cinnamyloxy-2-ethynylbenzene derivatives. Organic Chemistry Frontiers, 2016, 3, 979-984.	4.5	19
61	Asymmetric Synthesis Using Chiral Crystals of Coumarin-3-carboxamides and Carbenoids. Chemistry Letters, 2016, 45, 1310-1312.	1.3	6
62	Chiral N-1-adamantyl-N-trans-cinnamylaniline type ligands: synthesis and application to palladium-catalyzed asymmetric allylic alkylation of indoles. Organic and Biomolecular Chemistry, 2016, 14, 7509-7519.	2.8	33
63	Facile synthesis of amino acid-derived novel chiral hypervalent iodine(V) reagents and their applications. Tetrahedron Letters, 2016, 57, 5103-5107.	1.4	21
64	Phosphineâ€Catalyzed β,γâ€Umpolung Domino Reaction of Allenic Esters: Facile Synthesis of Tetrahydrobenzofuranones Bearing a Chiral Tetrasubstituted Stereogenic Carbon Center. Angewandte Chemie - International Edition, 2015, 54, 15511-15515.	13.8	106
65	Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water. Tetrahedron: Asymmetry, 2015, 26, 613-616.	1.8	31
66	An enantioselective organocatalyzed aza-Morita–Baylis–Hillman reaction of isatin-derived ketimines with acrolein. Organic and Biomolecular Chemistry, 2015, 13, 9022-9028.	2.8	31
67	Enantioselective oxidative-coupling of polycyclic phenols. Tetrahedron, 2014, 70, 1786-1793.	1.9	41
68	Enantioselective Organocatalyzed Formal [4+2] Cycloaddition of Ketimines with Allenoates: Easy Access to a Tetrahydropyridine Framework with a Chiral Tetrasubstituted Stereogenic Carbon Center. Asian Journal of Organic Chemistry, 2014, 3, 412-415.	2.7	57
69	P-chirogenic organocatalysts: application to the aza-Morita–Baylis–Hillman (aza-MBH) reaction of ketimines. Chemical Communications, 2013, 49, 8392.	4.1	80
70	Organocatalyzed Formal $[2 + 2]$ Cycloaddition of Ketimines with Allenoates: Facile Access to Azetidines with a Chiral Tetrasubstituted Carbon Stereogenic Center. Organic Letters, 2013, 15, 4142-4145.	4.6	70
71	Vanadium-catalyzed enantioselective Friedel–Crafts-type reactions. Dalton Transactions, 2013, 42, 11787-11790.	3.3	45
72	Chiral bifunctional organocatalysts bearing a 1,3-propanediamine unit for the aza-MBH reaction. Tetrahedron: Asymmetry, 2013, 24, 1189-1192.	1.8	8

#	ARTICLE	IF	CITATION
73	Design and synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron: Asymmetry, 2012, 23, 843-851.	1.8	21
74	Synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron Letters, 2011, 52, 6877-6879.	1.4	13
75	Empirical Comparison of the Various Spatial Prediction Models: in Spatial Econometrics, Spatial Statistics, and Semiparametric Statistics. Procedia, Social and Behavioral Sciences, 2011, 21, 120-129.	0.5	13
76	Enantiodifferentiating <i>endo</i> â€Selective Oxylactonization of <i>ortho</i> â€Alkâ€1â€enylbenzoate with a Lactateâ€Derived Arylâ€Î» ³ â€Iodane. Angewandte Chemie - International Edition, 2010, 49, 7068-70	071 ^{3.8}	183
77	Effect of Phenolic Substituent Position in Boron Complexes of Imidazo[1,5â€a]pyridine. Asian Journal of Organic Chemistry, 0, , .	2.7	2
78	Chiral Symmetry Breaking of Monoacylated Anhydroerythritols and <i>meso</i> â€1,2â€Diols through Crystallizationâ€Induced Deracemization. Angewandte Chemie, 0, , .	2.0	1