Stefan Eichmüller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4070172/publications.pdf

Version: 2024-02-01

104 papers 6,285 citations

94433 37 h-index 71685 76 g-index

111 all docs

111 docs citations

times ranked

111

7590 citing authors

#	Article	IF	CITATIONS
1	SOX9 is a target of miR-134-3p and miR-224-3p in breast cancer cell lines. Molecular and Cellular Biochemistry, 2023, 478, 305-315.	3.1	3
2	T-cell Receptor Therapy Targeting Mutant Capicua Transcriptional Repressor in Experimental Gliomas. Clinical Cancer Research, 2022, 28, 378-389.	7.0	11
3	Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell, 2022, 29, 760-775.e10.	11.1	29
4	Reply to: Comments on "Cost of decentralized <scp>CAR</scp> T cell production in an academic nonâ€profit setting― International Journal of Cancer, 2021, 148, 516-517.	5.1	4
5	Photon versus carbon ion irradiation: immunomodulatory effects exerted on murine tumor cell lines. Scientific Reports, 2020, 10, 21517.	3. 3	13
6	PCN335 COST OF DECENTRALIZED CAR T CELL PRODUCTION: CURRENT STATUS IN A EUROPEAN NON-PROFIT SETTING. Value in Health, 2020, 23, S83.	0.3	0
7	Cost of decentralized <scp>CAR</scp> Tâ€eell production in an academic nonprofit setting. International Journal of Cancer, 2020, 147, 3438-3445.	5.1	45
8	Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Computational Biology, 2020, 16, e1007657.	3.2	37
9	Measles Vaccines Designed for Enhanced CD8+ T Cell Activation. Viruses, 2020, 12, 242.	3 . 3	15
10	Radiation-induced alterations in immunogenicity of a murine pancreatic ductal adenocarcinoma cell line. Scientific Reports, 2020, 10, 686.	3.3	11
11	A universal antiâ€cancer vaccine: Chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival. International Journal of Cancer, 2019, 144, 909-921.	5.1	5
12	Patterns of antibody responses to nonviral cancer antigens in head and neck squamous cell carcinoma patients differ by human papillomavirus status. International Journal of Cancer, 2019, 145, 3436-3444.	5.1	8
13	Antibody Responses to Cancer Antigens Identify Patients with a Poor Prognosis among HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinoma Patients. Clinical Cancer Research, 2019, 25, 7405-7412.	7.0	13
14	A transplantable tumor model allowing investigation of NY-BR-1-specific T cell responses in HLA-DRB1*0401 transgenic mice. BMC Cancer, 2019, 19, 914.	2.6	1
15	Cognate Interaction With CD4+ T Cells Instructs Tumor-Associated Macrophages to Acquire M1-Like Phenotype. Frontiers in Immunology, 2019, 10, 219.	4.8	47
16	Abstract A067: Cognate interaction with CD4+ T-cells instructs M2-like macrophages to acquire M1-like phenotype. , 2019, , .		0
17	Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models. Oncolmmunology, 2018, 7, e1445457.	4.6	13
18	Clinical translation and regulatory aspects of CAR/TCR-based adoptive cell therapiesâ€"the German Cancer Consortium approach. Cancer Immunology, Immunotherapy, 2018, 67, 513-523.	4.2	11

#	Article	IF	Citations
19	miR-137 inhibits melanoma cell proliferation through downregulation of GLO1. Science China Life Sciences, 2018, 61, 541-549.	4.9	21
20	MiR-192, miR-200c and miR-17 are fibroblast-mediated inhibitors of colorectal cancer invasion. Oncotarget, 2018, 9, 35559-35580.	1.8	26
21	Controlling the Immune Suppressor: Transcription Factors and MicroRNAs Regulating CD73/NT5E. Frontiers in Immunology, 2018, 9, 813.	4.8	68
22	Multiplex bead-based measurement of humoral immune responses against tumor-associated antigens in stage II melanoma patients of the EORTC18961 trial. Oncolmmunology, 2018, 7, e1428157.	4.6	18
23	miR-193b and miR-30c-1* inhibit, whereas miR-576-5p enhances melanoma cell invasion <i>in vitro</i> Oncotarget, 2018, 9, 32507-32522.	1.8	21
24	Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. Journal of the National Cancer Institute, 2017, 109, .	6.3	121
25	Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system. PLoS ONE, 2017, 12, e0174077.	2.5	16
26	Prospective evaluation of 64 serum autoantibodies as biomarkers for early detection of colorectal cancer in a true screening setting. Oncotarget, 2016, 7, 16420-16432.	1.8	42
27	Evaluation of the diagnostic value of 64 simultaneously measured autoantibodies for early detection of gastric cancer. Scientific Reports, 2016, 6, 25467.	3.3	28
28	miR-339-3p Is a Tumor Suppressor in Melanoma. Cancer Research, 2016, 76, 3562-3571.	0.9	65
29	SOX5 is involved in balanced MITF regulation in human melanoma cells. BMC Medical Genomics, 2016, 9, 10.	1.5	34
30	Multiplex bead-based measurement of humoral immune responses against tumor-associated antigens in stage II melanoma patients: Side study of the EORTC 18961 trial Journal of Clinical Oncology, 2016, 34, 3032-3032.	1.6	0
31	miRâ€137 inhibits proliferation of melanoma cells by targeting <scp>PAK</scp> 2. Experimental Dermatology, 2015, 24, 947-952.	2.9	42
32	Identification of NYâ€BRâ€1â€specific CD4 ⁺ T cell epitopes using HLAâ€transgenic mice. International Journal of Cancer, 2015, 136, 2588-2597.	5.1	5
33	T cell responses in early-stage melanoma patients occur frequently and are not associated with humoral response. Cancer Immunology, Immunotherapy, 2015, 64, 1369-1381.	4.2	6
34	LRAT Overexpression Diminishes Intracellular Levels of Biologically Active Retinoids and Reduces Retinoid Antitumor Efficacy in the Murine Melanoma B16F10 Cell Line. Skin Pharmacology and Physiology, 2015, 28, 205-212.	2.5	9
35	Prognostic significance of spontaneous antibody responses against tumor-associated antigens in malignant melanoma patients. International Journal of Cancer, 2015, 136, 138-151.	5.1	34
36	Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy. PLoS ONE, 2015, 10, e0138458.	2.5	16

#	Article	IF	CITATIONS
37	Abstract 3154: Identification of CD4+ T cell epitopes specific for the breast cancer associated antigen NY-BR-1., 2015, , .		O
38	Abstract 5012: Establishment of a transplantable, NY-BR-1 expressing breast cancer model in HLA-transgenic mice. , 2015, , .		0
39	Abstract 3109: A functional microRNA screening approach that identifies microRNAs affecting melanoma cell invasion. , 2015, , .		0
40	Estimating the activity of transcription factors by the effect on their target genes. Bioinformatics, 2014, 30, i401-i407.	4.1	66
41	Knockdown of lecithin retinol acyltransferase increases allâ€ <i>trans</i> retinoic acid levels and restores retinoid sensitivity in malignant melanoma cells. Experimental Dermatology, 2014, 23, 832-837.	2.9	8
42	The role of microRNAs in melanoma. European Journal of Cell Biology, 2014, 93, 11-22.	3.6	41
43	A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014, 512, 324-327.	27.8	613
44	Survivin Blockade Sensitizes Rhabdomyosarcoma Cells for Lysis by Fetal Acetylcholine Receptor–Redirected T Cells. American Journal of Pathology, 2013, 182, 2121-2131.	3.8	15
45	MiR-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2. Cancer Letters, 2013, 341, 240-247.	7.2	64
46	miR-137 Inhibits the Invasion of Melanoma Cells through Downregulation of Multiple Oncogenic Target Genes. Journal of Investigative Dermatology, 2013, 133, 768-775.	0.7	126
47	Lecithin retinol acyltransferase as a potential prognostic marker for malignant melanoma. Experimental Dermatology, 2013, 22, 757-759.	2.9	11
48	Abstract 1259: Murine HLA-restricted CD4+ T cell lines as source of high affinity TCRs specific for the human breast cancer-associated tumor antigen NY-BR-1, 2013, , .		1
49	Autoantibodies against the Ca2+-binding protein recoverin in blood sera of patients with various oncological diseases. Oncology Letters, 2012, 3, 377-382.	1.8	12
50	Rare Drosha Splice Variants Are Deficient in MicroRNA Processing but Do Not Affect General MicroRNA Expression in Cancer Cells. Neoplasia, 2012, 14, 238-IN26.	5.3	26
51	MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathologica, 2012, 123, 529-538.	7.7	60
52	Expression and activity of alcohol and aldehyde dehydrogenases in melanoma cells and in melanocytes. Journal of Cellular Biochemistry, 2012, 113, 792-799.	2.6	9
53	Vitamin A metabolism in benign and malignant melanocytic skin cells: Importance of lecithin/retinol acyltransferase and RPE65. Journal of Cellular Physiology, 2012, 227, 718-728.	4.1	19
54	Retinal and retinol are potential regulators of gene expression in the keratinocyte cell line HaCaT. Experimental Dermatology, 2011, 20, 373-375.	2.9	12

#	Article	IF	CITATIONS
55	Corrigendum to Letter to the Editor: Retinal and retinol are potential regulators of gene expression in the keratinocyte cell line HaCaT. Experimental Dermatology, 2011, 20, 375-375.	2.9	O
56	Regulation of Gene Expression by Retinoids. Current Medicinal Chemistry, 2011, 18, 1405-1412.	2.4	62
57	Phase II Clinical Trial of Intratumoral Application of TG1042 (Adenovirus-interferon- \hat{I}^3) in Patients With Advanced Cutaneous T-cell Lymphomas and Multilesional Cutaneous B-cell Lymphomas. Molecular Therapy, 2010, 18, 1244-1247.	8.2	38
58	Screening of Human Tumor Antigens for CD4+ T Cell Epitopes by Combination of HLA-Transgenic Mice, Recombinant Adenovirus and Antigen Peptide Libraries. PLoS ONE, 2010, 5, e14137.	2.5	15
59	Cancerâ€retina antigens as potential paraneoplastic antigens in melanomaâ€associated retinopathy. International Journal of Cancer, 2009, 124, 140-149.	5.1	37
60	Detergent fractionation with subsequent subtractive suppression hybridization as a tool for identifying genes coding for plasma membrane proteins. Experimental Dermatology, 2009, 18, 527-535.	2.9	3
61	Identification of selectively expressed genes and antigens in CTCL. Experimental Dermatology, 2008, 17, 324-334.	2.9	27
62	Cytotoxic natural antibodies against human tumours: An option for anti-cancer immunotherapy?. Autoimmunity Reviews, 2008, 7, 491-495.	5.8	35
63	Visible Light Modulates the Expression of Cancer-Retina Antigens. Molecular Cancer Research, 2008, 6, 110-118.	3.4	12
64	Onconeural Versus Paraneoplastic Antigens?. Current Medicinal Chemistry, 2007, 14, 2489-2494.	2.4	11
65	Expression of GAGE family proteins in malignant melanoma. Cancer Letters, 2007, 251, 258-267.	7.2	22
66	Photoreceptor proteins as cancer-retina antigens. International Journal of Cancer, 2007, 120, 1268-1276.	5.1	47
67	Immunoscreening of a cutaneous T-cell lymphoma library for plasma membrane proteins. Cancer Immunology, Immunotherapy, 2007, 56, 783-795.	4.2	11
68	Recoverin as a cancer-retina antigen. Cancer Immunology, Immunotherapy, 2006, 56, 110-116.	4.2	43
69	Serological analysis of human renal cell carcinoma. International Journal of Cancer, 2006, 118, 2210-2219.	5.1	22
70	Identification of HLA class I dependent immunogenic peptides from clonotypic TCRβ expressed in cutaneous Tâ€cell lymphoma. International Journal of Cancer, 2006, 119, 2476-2480.	5.1	5
71	SEREX identification of new tumor antigens linked to melanoma-associated retinopathy. International Journal of Cancer, 2005, 114, 88-93.	5.1	47
72	SEREX identification of new tumour-associated antigens in cutaneous T-cell lymphoma. British Journal of Dermatology, 2004, 150, 252-258.	1,5	32

#	Article	IF	Citations
73	GBP-5 Splicing Variants: New Guanylate-Binding Proteins with Tumor-Associated Expression and Antigenicity. Journal of Investigative Dermatology, 2004, 122, 1510-1517.	0.7	35
74	Identification of tumor antigens and T-cell epitopes, and its clinical application. Cancer Immunology, Immunotherapy, 2004, 53, 196-203.	4.2	32
75	Humoral immune response against melanoma antigens induced by vaccination with cytokine gene-modified autologous tumor cells. International Journal of Cancer, 2004, 108, 307-313.	5.1	24
76	Tissue expression and sero-reactivity of tumor-specific antigens in colorectal cancer. Cancer Letters, 2004, 208, 197-206.	7.2	24
77	Adenovirus-mediated intralesional interferon- \hat{l}^3 gene transfer induces tumor regressions in cutaneous lymphomas. Blood, 2004, 104, 1631-1638.	1.4	104
78	Tumor-specific antigens in cutaneous T-cell lymphoma: Expression and sero-reactivity. International Journal of Cancer, 2003, 104, 482-487.	5.1	41
79	cTAGE: A Cutaneous T Cell Lymphoma Associated Antigen Family with Tumor-Specific Splicing. Journal of Investigative Dermatology, 2003, 121, 198-206.	0.7	52
80	Seroreactivity against MAGE-A and LAGE-1 proteins in melanoma patients. British Journal of Dermatology, 2003, 149, 282-288.	1.5	13
81	Tumor-associated Antigens as Possible Targets for Immune Therapy in Head and Neck Cancer: Comparative mRNA Expression Analysis of RAGE and GAGE Genes. Acta Oto-Laryngologica, 2002, 122, 546-552.	0.9	25
82	Towards Defining Specific Antigens for Cutaneous Lymphomas. Oncology Research and Treatment, 2002, 25, 448-454.	1.2	7
83	mRNA expression of tumor-associated antigens in melanoma tissues and cell lines. Experimental Dermatology, 2002, 11, 292-301.	2.9	41
84	A Comprehensive Guide for the Accurate Classification of Murine Hair Follicles in Distinct Hair Cycle Stages. Journal of Investigative Dermatology, 2001, 117, 3-15.	0.7	1,129
85	Serological detection of cutaneous T-cell lymphoma-associated antigens. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 629-634.	7.1	63
86	A Comprehensive Guide for the Recognition and Classification of Distinct Stages of Hair Follicle Morphogenesis. Journal of Investigative Dermatology, 1999, 113, 523-532.	0.7	501
87	Generation and Cyclic Remodeling of the Hair Follicle Immune System in Mice. Journal of Investigative Dermatology, 1998, 111, 7-18.	0.7	130
88	Clusters of Perifollicular Macrophages in Normal Murine Skin: Physiological Degeneration of Selected Hair Follicles by Programmed Organ Deletion. Journal of Histochemistry and Cytochemistry, 1998, 46, 361-370.	2.5	95
89	Identification and measurement of \hat{l}^2 -endorphin levels in the skin during induced hair growth in mice. Biochimica Et Biophysica Acta - General Subjects, 1997, 1336, 315-322.	2.4	27
90	Neural Mechanisms of Hair Growth Control. Journal of Investigative Dermatology Symposium Proceedings, 1997, 2, 61-68.	0.8	99

#	Article	IF	CITATIONS
91	Keratin 17 Gene Expression during the Murine Hair Cycle. Journal of Investigative Dermatology, 1997, 108, 324-329.	0.7	64
92	Transforming Growth Factor- \hat{l}^2 Receptor Type I and Type II Expression During Murine Hair Follicle Development and Cycling. Journal of Investigative Dermatology, 1997, 109, 518-526.	0.7	113
93	A simple immunofluorescence technique for simultaneous visualization of mast cells and nerve fibers reveals selectivity and hair cycle - dependent changes in mast cell - nerve fiber contacts in murine skin. Archives of Dermatological Research, 1997, 289, 292-302.	1.9	114
94	Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin., 1997, 386, 379-395.		127
95	A new method for double immunolabelling with primary antibodies from identical species. Journal of Immunological Methods, 1996, 190, 255-265.	1.4	40
96	Sensory neuron development revealed by taurine immunocytochemistry in the honeybee. Journal of Comparative Neurology, 1995, 352, 297-307.	1.6	23
97	A Murine Model for Inducing and Manipulating Hair Follicle Regression (Catagen): Effects of Dexamethasone and Cyclosporin A. Journal of Investigative Dermatology, 1994, 103, 143-147.	0.7	126
98	Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. Journal of Comparative Neurology, 1994, 348, 583-595.	1.6	156
99	Stimulatory effect of octopamine on juvenile hormone biosynthesis in honey bees (Apis mellifera): Physiological and immunocytochemical evidence. Journal of Insect Physiology, 1994, 40, 865-872.	2.0	80
100	Distribution and changing density of gamma-delta T cells in murine skin during the induced hair cycle. British Journal of Dermatology, 1994, 130, 281-289.	1.5	88
101	Alkaline phosphatase activity and localization during the murine hair cycle. British Journal of Dermatology, 1994, 131, 303-310.	1.5	150
102	Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behavioral and Neural Biology, 1994, 62, 259-263.	2.2	218
103	Expression of classical and non-classical MHC class I antigens in murine hair follicles. British Journal of Dermatology, 1994, 131, 177-183.	1.5	73
104	Neurosecretory cells in the honeybee brain and suboesophageal ganglion show FMRFamide-like immunoreactivity. Journal of Comparative Neurology, 1991, 312, 164-174.	1.6	27