Andreas Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4069735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of brain- and bone-specific breast cancer metastasis genes. Cancer Letters, 2009, 276, 212-220.	7.2	104
2	Chemosensitivity of B cell chronic lymphocytic leukemia and correlated expression of proteins regulating apoptosis, cell cycle and DNA repair. Leukemia, 2000, 14, 40-46.	7.2	54
3	BRCA1 and Breast Cancer: a Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. Journal of Breast Cancer, 2019, 22, 1.	1.9	43
4	HBX causes cyclin D1 overexpression and development of breast cancer in transgenic animals that are heterozygous for p53. Oncogene, 2003, 22, 2910-2919.	5.9	39
5	O-Glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines. Glycobiology, 2009, 19, 382-398.	2.5	37
6	Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology, 2010, 20, 107-117.	2.5	35
7	Comparison of gene expression data from human and mouse breast cancers: Identification of a conserved breast tumor gene set. International Journal of Cancer, 2007, 121, 683-688.	5.1	30
8	Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes. Cancer Genetics and Cytogenetics, 2010, 200, 79-99.	1.0	28
9	Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals. Journal of Molecular Medicine, 2005, 83, 362-376.	3.9	24
10	The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas. Wspolczesna Onkologia, 2018, 22, 215-222.	1.4	23
11	From aneuploidy to cancer: The evolution of a new species?. Journal of Biosciences, 2012, 37, 211-220.	1.1	14
12	Tracking the Activation of Stat5 through the Expression of an Inducible Reporter Gene in a Transgenic Mouse Line. Endocrinology, 2011, 152, 1935-1947.	2.8	10
13	Inositol-C2-PAF down-regulates components of the antigen presentation machinery in a 2D-model of epidermal inflammation. Biochemical Pharmacology, 2014, 87, 477-488.	4.4	10
14	Dichloroacetate and PX-478 exhibit strong synergistic effects in a various number of cancer cell lines. BMC Cancer, 2021, 21, 481.	2.6	10
15	Impact of alkylphospholipids on the gene expression profile of HaCaT cells. Pharmacogenetics and Genomics, 2011, 21, 375-387.	1.5	6
16	SNP microarray analyses reveal copy number alterations and progressive genome reorganization during tumor development in SVT/t driven mice breast cancer. BMC Cancer, 2012, 12, 380.	2.6	6
17	CorrXpressionidentification of significant groups of genes and experiments by means of correspondence analysis and ratio analysis. In Silico Biology, 2006, 6, 61-70.	0.9	5
18	Restoration of wild-type p53 in drug-resistant mouse breast cancer cells leads to differential gene expression, but is not sufficient to overcome the malignant phenotype. Molecular and Cellular Biochemistry, 2013, 379, 213-227.	3.1	4

#	Article	IF	CITATIONS
19	Synergisms of genome and metabolism stabilizing antitumor therapy (GMSAT) in human breast and colon cancer cell lines: a novel approach to screen for synergism. BMC Cancer, 2020, 20, 617.	2.6	4
20	Genome reorganization in different cancer types: detection of cancer specific breakpoint regions. Molecular Cytogenetics, 2019, 12, 25.	0.9	3
21	Inositol-C2-PAF acts as a biological response modifier and antagonizes cancer-relevant processes in mammary carcinoma cells. Cellular Oncology (Dordrecht), 2018, 41, 505-516.	4.4	1