Dmitrii D Titov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4069362/publications.pdf

Version: 2024-02-01

1170033 1051228 68 387 9 16 citations h-index g-index papers 68 68 68 203 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Barium-Substituted Tricalcium Phosphate Ceramics. Inorganic Materials, 2022, 58, 317-324.	0.2	3
2	Plasma-Sprayed TiC-Based Cermets. Inorganic Materials: Applied Research, 2021, 12, 461-467.	0.1	1
3	Mechanical Behavior of VNS9-Sh TRIP Steel after Tempering. Russian Metallurgy (Metally), 2021, 2021, 475-480.	0.1	1
4	The impact of a sintering additive from Al, Mg, Y-oligomer on the physicochemical properties of MoSi2 ceramic. Journal of Physics: Conference Series, 2021, 1942, 012045.	0.3	1
5	Si3N4 ceramics with sintering additive of MnO-TiO2. Journal of Physics: Conference Series, 2021, 1942, 012037.	0.3	1
6	Sintering mechanism and activation energy of MgAl2O4 synthesized by preceramic organomagnesiumoxanealumoxan. Journal of Physics: Conference Series, 2021, 1942, 012043.	0.3	0
7	Phases formation in cerium-doped hydroxyapatite. Journal of Physics: Conference Series, 2021, 1942, 012036.	0.3	0
8	Effect of the Addition of Sm2O3 on the Sintering of MgAl2O4 from a Preceramic Al,Mg Oligomer. Russian Journal of Inorganic Chemistry, 2021, 66, 1141-1147.	0.3	3
9	Properties of Hot Compressed 21R SiAlON Ceramics with a Samarium Oxide Additive. Russian Journal of Inorganic Chemistry, 2021, 66, 1196-1202.	0.3	2
10	Influence of the Gas Atmosphere on the Formation of SiC Fibers upon the Siliconization of Carbon Felt. Russian Journal of Inorganic Chemistry, 2021, 66, 1191-1195.	0.3	2
11	Thermal expansion of aluminum matrix composites reinforced by carbon nanotubes with in-situ and ex-situ designed interfaces ceramics layers. Journal of Alloys and Compounds, 2021, 872, 159593.	2.8	19
12	Bi1.4Er0.6Ru2O7–50 wt % δ-Bi2O3 Oxygen-Permeable Membrane Material Prepared by Crystallization from Partially Molten State. Russian Journal of Inorganic Chemistry, 2021, 66, 1229-1233.	0.3	6
13	TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings. Inorganic Materials: Applied Research, 2021, 12 1378-1385.	² , _{0.1}	0
14	The phase composition, morphology and compressibility of graphene–zirconia composite nanostructured powder. Nanoscale Advances, 2020, 2, 182-189.	2.2	4
15	SiC-Fiber Reinforced Silicon Carbide-Based Ceramic Composite. Inorganic Materials, 2020, 56, 987-992.	0.2	3
16	Physical and mechanical properties of composite materials in the MoSia ₂ -SiC-TiB ₂ system. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012067.	0.3	4
17	Rheological properties of Y3Al5O12 powder obtained by preceramic organoyttroxanealumoxanes. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012090.	0.3	0
18	Study of the physicochemical and biological properties of the new promising Ti–20Nb–13Ta–5Zr alloy for biomedical applications. Materials Chemistry and Physics, 2020, 255, 123557.	2.0	23

#	Article	IF	CITATIONS
19	Rheological properties of Si3N4 and Si3N4 with sintering additive CaO-Al2O3 powders. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012032.	0.3	3
20	21R-Sialon ceramics, obtained by hot pressing. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012052.	0.3	1
21	Elementoxanealumoxanes – modifiers of silicon carbide ceramic composites components. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012081.	0.3	O
22	Si3N4–TiN Composites Produced by Hot-Pressing Silicon Nitride and Titanium Powders. Inorganic Materials, 2020, 56, 309-313.	0.2	4
23	Effect of graphene sheet incorporation on the physicochemical properties of nano-alumina. New Journal of Chemistry, 2020, 44, 9046-9052.	1.4	4
24	Copper and cerium co-substituted hydroxyapatite: powders synthesis and sintering. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012061.	0.3	2
25	Effect of the Tempering Temperature on the Structure and the Mechanical Behavior of VNS9-Sh TRIP Steel with a High Martensite Content. Russian Metallurgy (Metally), 2020, 2020, 408-415.	0.1	0
26	Increasing the Sintering Rate and Strength of ZrO2–Al2O3 Ceramic Materials by Iron Oxide Additions. Inorganic Materials, 2020, 56, 182-189.	0.2	10
27	Properties of composites SiC/SiCf obtained by hot pressing of SHS of silicon carbide powder. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012113.	0.3	2
28	The Influence of Co Additive on the Sintering, Mechanical Properties, Cytocompatibility, and Digital Light Processing Based Stereolithography of 3Y-TZP-5Al2O3 Ceramics. Materials, 2020, 13, 2789.	1.3	11
29	Properties of silicon carbide fibers obtained by silicification of carbon fabric with SiO vapours. Ceramics International, 2020, 46, 18101-18105.	2.3	10
30	TiC–Cr3C2–WC–TiB2–SiC-Based Cermets. Inorganic Materials: Applied Research, 2020, 11, 1199-1213.	0.1	2
31	Synthesis of Ti–Cr–C composite materials from CaCrO4based mixtures. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012078.	0.3	O
32	Mechanical Properties and Structure of a VNS9-Sh Steel as Functions of the Tempering Temperature. Russian Metallurgy (Metally), 2019, 2019, 403-408.	0.1	4
33	Preparation and Properties of Copper-Substituted Hydroxyapatite Powders and Ceramics. Inorganic Materials, 2019, 55, 1061-1067.	0.2	9
34	Silicon carbide ceramics reinforced SiC fibers. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012085.	0.3	4
35	Cermet Plasma Coatings Based on Silicon Carbide. Inorganic Materials: Applied Research, 2019, 10, 1145-1152.	0.1	3
36	Features of β-Phase Decay in Ti–22Nb–6Zr Alloy. Inorganic Materials: Applied Research, 2019, 10, 1115-1122	2.0.1	4

#	Article	IF	CITATIONS
37	Production of Ceramic Materials Based on SiC with Low-Melting Oxide Additives. Glass and Ceramics (English Translation of Steklo I Keramika), 2019, 75, 400-407.	0.2	39
38	SHS Metallurgy of Binary Silicides (MoW)Si2 for Sintering Composite Materials. Inorganic Materials: Applied Research, 2019, 10, 473-479.	0.1	0
39	Silicon nitride ceramics with light-melting sintering additive in CaO-TiO2 system. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012080.	0.3	7
40	Composite ceramics based on silicon carbide with layered location of reinforcing SiC fibers. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012082.	0.3	1
41	Rheological properties of MoSi2-NbSi2 powders obtained by SHS-method and solid-phase mixture. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012077.	0.3	2
42	Study of the coefficient of heat expansion of TiNbTaZr alloy. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012092.	0.3	5
43	The effect of transition metal oxides on the sintering and properties of ceramics in the ZrO2-Al2O3 system. Journal of Physics: Conference Series, 2019, 1347, 012025.	0.3	1
44	Rheological properties of MgAl ₂ O ₄ obtained from preceramic organomagnesiumoxanealumoxanes. Journal of Physics: Conference Series, 2019, 1347, 012062.	0.3	1
45	Liquid-sintered SiC based materials with additive low oxide oxides. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012073.	0.3	7
46	Reinforced composite materials based on silicon carbide and silicon nitride. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012072.	0.3	2
47	Agglomeration and Properties of Ceramics Based on Partially Stabilized Zirconium Dioxide Containing Oxides of Aluminum and Iron. Inorganic Materials: Applied Research, 2018, 9, 121-124.	0.1	9
48	The sintering process difference of MoSi ₂ , NbSi ₂ and (Mo _{1-x} ,Nb _x)Si ₂ solid solution. Journal of Physics: Conference Series, 2018, 1134, 012058.	0.3	2
49	Features of the Kinetics of Sintering of Hydroxyapatite Powders with Various Particle Sizes. Doklady Chemistry, 2018, 483, 308-311.	0.2	2
50	Construction ceramics from silicon nitride with calcium aluminates additives received by the sintering method in the SHS-reactor. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012040.	0.3	4
51	Features of the phase composition and morphology of the particles of sialon synthesized from silicon and aluminum nitrides. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012046.	0.3	3
52	Activation Energy and Mechanism of the Molybdenum Disilicide Sintering Process. Inorganic Materials, 2018, 54, 1113-1118.	0.2	7
53	Molding Features of Silicon Carbide Products by the Method of Hot Slip Casting. Inorganic Materials: Applied Research, 2018, 9, 675-678.	0.1	25
54	Composite material Si ₃ N ₄ /SiC with calcium aluminate additive. Journal of Physics: Conference Series, 2018, 1134, 012036.	0.3	15

#	Article	IF	CITATIONS
55	Sintering activation energy MoSi2-WSi2-Si3N4 ceramic. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012024.	0.3	5
56	Effect of sintering methods and temperatures on porosity of the ceramics from aluminum oxinitride. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012030.	0.3	3
57	Effect of Reaction Sintering Conditions on Properties of Ceramics Based on Alumina Oxynitride. Inorganic Materials: Applied Research, 2018, 9, 599-602.	0.1	5
58	Hot-pressed ceramic SiC–YAG materials. Inorganic Materials, 2017, 53, 220-225.	0.2	36
59	Low-temperature oxidation of MoSi2–Si3N4 composites. Inorganic Materials: Applied Research, 2016, 7, 624-629.	0.1	7
60	Strengthening of composite materials of the fluorohydroxyapatite–zirconia system by titanium nitride. Doklady Chemistry, 2016, 471, 343-345.	0.2	0
61	Synthesis of aluminum oxynitride (AlON) and study of the properties of ceramics based on it. Inorganic Materials: Applied Research, 2016, 7, 517-519.	0.1	10
62	Effect of mechanical activation of powders on the sintering of calcium carbonate-based ceramic materials containing carbonated hydroxyapatite. Doklady Chemistry, 2014, 456, 79-82.	0.2	3
63	Influence of WSi2 content and additions of magnesium alumosilicates on oxidation and strength properties of MoSi2-WSi2 composites. Inorganic Materials: Applied Research, 2013, 4, 66-70.	0.1	10
64	Thermochemical gypsum conversion forming calcium phosphates. Inorganic Materials: Applied Research, 2013, 4, 356-361.	0.1	1
65	Dilatometric sintering study of fine-grained ceramics from ultradispersed admixture composed of Ce0.09Zr0.91O2 and MgO–Al2O3. Journal of the European Ceramic Society, 2013, 33, 2327-2333.	2.8	4
66	Effect of thermal treatment on sintering and strength of ceramics from hydroxyapatite nanopowders. Inorganic Materials: Applied Research, 2011, 2, 377-380.	0.1	4
67	Materials based on boron carbide obtained by reaction sintering. IOP Conference Series: Materials Science and Engineering, 0, 525, 012074.	0.3	17
68	Synthesis the composites Si ₃ N ₄ -TiN by hot pressing. IOP Conference Series: Materials Science and Engineering, 0, 525, 012083.	0.3	4