Qingxue Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4068893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-N _{<i>x</i>} Sites for Advanced Oxygen Reduction in Acid Media. ACS Catalysis, 2017, 7, 1655-1663.	11.2	483
2	In Situ Confinement Pyrolysis Transformation of ZIFâ€8 to Nitrogenâ€Enriched Mesoâ€Microporous Carbon Frameworks for Oxygen Reduction. Advanced Functional Materials, 2016, 26, 8334-8344.	14.9	281
3	MOFâ€Based Metalâ€Dopingâ€Induced Synthesis of Hierarchical Porous CuN/C Oxygen Reduction Electrocatalysts for Zn–Air Batteries. Small, 2017, 13, 1700740.	10.0	170
4	Optimal Configuration of Nâ€Doped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 11999-12006.	13.8	121
5	Controllable Construction of Core–Shell Polymer@Zeolitic Imidazolate Frameworks Fiber Derived Heteroatomâ€Doped Carbon Nanofiber Network for Efficient Oxygen Electrocatalysis. Small, 2018, 14, e1704207.	10.0	99
6	Interconnected Hierarchically Porous Fe, N-Codoped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 16178-16186.	8.0	94
7	<i>In Situ</i> Self-Sacrificed Template Synthesis of Fe-N/G Catalysts for Enhanced Oxygen Reduction. ACS Applied Materials & amp; Interfaces, 2015, 7, 18170-18178.	8.0	56
8	Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution. Nanoscale, 2015, 7, 14707-14714.	5.6	29
9	Atomicâ€6cale Dispersed Feâ€Based Catalysts Confined on Nitrogenâ€Doped Graphene for Liâ€6 Batteries: Polysulfides with Enhanced Conversion Efficiency. Chemistry - A European Journal, 2020, 26, 10314-10320.	3.3	24
10	In Situ ZnO-Activated Hierarchical Porous Carbon Nanofibers as Self-Standing Electrodes for Flexible Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 17817-17824.	6.7	22
11	Surface reconstruction of Ni doped Co–Fe Prussian blue analogues for enhanced oxygen evolution. Catalysis Science and Technology, 2021, 11, 1110-1115.	4.1	22
12	Optimal Configuration of Nâ€Đoped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis. Angewandte Chemie, 2020, 132, 12097-12104.	2.0	21
13	Balance of N-Doping Engineering and Carbon Chemistry to Expose Edge Graphitic N Sites for Enhanced Oxygen Reduction Electrocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 61129-61138.	8.0	14
14	Stepwise Fabrication of Co-Embedded Porous Multichannel Carbon Nanofibers for High-Efficiency Oxygen Reduction. Nano-Micro Letters, 2019, 11, 33.	27.0	12
15	Transformation of ZIF-8 nanoparticles into 3D nitrogen-doped hierarchically porous carbon for Li–S batteries. RSC Advances, 2020, 10, 17345-17352.	3.6	12
16	Schiff-base polymer derived nitrogen-rich microporous carbon spheres synthesized by molten-salt route for high-performance supercapacitors. RSC Advances, 2015, 5, 60956-60961.	3.6	11
17	Moâ€Vacancies Defect Engineering of Oneâ€Đimensional Porous Mo ₂ C Nanowires for Enhanced Highâ€Efficiency Hydrogen Evolution. ChemCatChem, 0, , .	3.7	11
18	Edge reconfiguration of N, P-codoped carbon boosts oxygen reduction electrocatalysis. Journal of Materials Science, 2021, 56, 19577-19588.	3.7	6

Qingxue Lai

#	Article	IF	CITATIONS
19	Thorn-Like Carbon Nanofibers Combined with Molybdenum Nitride Nanosheets as a Modified Separator Coating: An Efficient Chemical Anchor and Catalyst for Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 6654-6662.	5.1	5
20	Controllable Fabrication of Core‣hell Co ₉ S ₈ /Co Embedded on Multiâ€Channel Carbon Nanofibers as Efficient Oxygen Electrocatalysts for Rechargeable Znâ€air Batteries. ChemElectroChem, 2021, 8, 3311-3317.	3.4	4
21	Nitrogen-doped multi-channel carbon nanofibers incorporated with nickel nanoparticles as a multifunctional modification layer of the separator for ultra stable Li–S batteries. New Journal of Chemistry, 2021, 45, 9472-9477.	2.8	3
22	Inâ€situ activation/dedoping induced defective carbon sponge for enhanced oxygen reduction electrocatalysis. ChemElectroChem, 2021, 8, 4781.	3.4	2
23	Electrocatalysts: MOFâ€Based Metalâ€Dopingâ€Induced Synthesis of Hierarchical Porous CuN/C Oxygen Reduction Electrocatalysts for Zn–Air Batteries (Small 30/2017). Small, 2017, 13, .	10.0	1