Richard B Todd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4068889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	3.8	417
2	Evolution of a Fungal Regulatory Gene Family: The Zn(II)2Cys6 Binuclear Cluster DNA Binding Motif. Fungal Genetics and Biology, 1997, 21, 388-405.	0.9	262
3	Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nature Protocols, 2007, 2, 811-821.	5.5	152
4	Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics, 2014, 15, 214.	1.2	114
5	Nuclear Accumulation of the GATA Factor AreA in Response to Complete Nitrogen Starvation by Regulation of Nuclear Export. Eukaryotic Cell, 2005, 4, 1646-1653.	3.4	93
6	Transcriptional control of <i>nmrA</i> by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in <i>Aspergillus nidulans</i> . Molecular Microbiology, 2007, 66, 534-551.	1.2	86
7	FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO Journal, 1998, 17, 2042-2054.	3.5	77
8	TupA, the Penicillium marneffei Tup1p homologue, represses both yeast and spore development. Molecular Microbiology, 2003, 48, 85-94.	1.2	60
9	Genetic manipulation of Aspergillus nidulans: heterokaryons and diploids for dominance, complementation and haploidization analyses. Nature Protocols, 2007, 2, 822-830.	5.5	56
10	Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genetics and Biology, 2008, 45, 728-737.	0.9	47
11	Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. Microbiology (United Kingdom), 2009, 155, 3868-3880.	0.7	40
12	Characterization of the Mutagenic Spectrum of 4-Nitroquinoline 1-Oxide (4-NQO) in <i>Aspergillus nidulans</i> by Whole Genome Sequencing. G3: Genes, Genomes, Genetics, 2014, 4, 2483-2492.	0.8	38
13	Inducer-Dependent Nuclear Localization of a Zn(II) ₂ Cys ₆ Transcriptional Activator, AmyR, in <i>Aspergillus nidulans</i> . Bioscience, Biotechnology and Biochemistry, 2009, 73, 391-399.	0.6	35
14	Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in <i>Aspergillus nidulans</i> . ACS Chemical Biology, 2018, 13, 3193-3205.	1.6	35
15	Characterization of regulatory non-catalytic hexokinases in Aspergillus nidulans. Molecular Genetics and Genomics, 2007, 277, 519-532.	1.0	34
16	Molecular Characterization of Mutants of the Acetate Regulatory GenefacBofAspergillus nidulans. Fungal Genetics and Biology, 1997, 22, 92-102.	0.9	30
17	Multiple Nuclear Localization Signals Mediate Nuclear Localization of the GATA Transcription Factor AreA. Eukaryotic Cell, 2014, 13, 527-538.	3.4	29
18	Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB. Microbiology (United Kingdom), 2013, 159, 2467-2480.	0.7	27

RICHARD B TODD

#	Article	IF	CITATIONS
19	The Aspergillus nidulans rcoA Gene Is Required for veA-Dependent Sexual Development. Genetics, 2006, 174, 1685-1688.	1.2	23
20	Dual <scp>DNA</scp> binding and coactivator functions of <scp><i>A</i></scp> <i>spergillus nidulans</i> â€ <scp>TamA</scp> , a <scp>Z</scp> n(<scp>II</scp>)2 <scp>Cys</scp> 6 transcription factor. Molecular Microbiology, 2014, 92, 1198-1211.	1.2	16
21	Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization. Scientific Reports, 2015, 5, 13592.	1.6	15
22	Detection of unpaired DNA at meiosis results in RNA-mediated silencing. BioEssays, 2003, 25, 99-103.	1.2	13
23	Distinct roles for the p53-like transcription factor XprG and autophagy genes in the response to starvation. Fungal Genetics and Biology, 2015, 83, 10-18.	0.9	9
24	Biodegradable Drug-Delivery Peptide Nanocapsules. ACS Omega, 2019, 4, 20059-20063.	1.6	9
25	Resistance of Kansas <i>Sclerotinia homoeocarpa</i> Isolates to Thiophanate-Methyl and Determination of Associated β-Tubulin Mutation. Plant Health Progress, 2014, 15, 80-84.	0.8	8
26	Duplication and Functional Divergence of Branched-Chain Amino Acid Biosynthesis Genes in Aspergillus nidulans. MBio, 2021, 12, e0076821.	1.8	8
27	Co-option of an extracellular protease for transcriptional control of nutrient degradation in the fungus Aspergillus nidulans. Communications Biology, 2021, 4, 1409.	2.0	7
28	11 Regulation of Fungal Nitrogen Metabolism. , 2016, , 281-303.		6
29	Nutritional factors modulating plant and fruit susceptibility to pathogens: BARD workshop, Haifa, Israel, February 25–26, 2018. Phytoparasitica, 2020, 48, 317-333.	0.6	0