Sebastien Tilloy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4068658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclodextrins as Supramolecular Hosts for Organometallic Complexes. Chemical Reviews, 2006, 106, 767-781.	23.0	394
2	Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catalysis Science and Technology, 2014, 4, 1899.	2.1	100
3	A further breakthrough in biphasic, rhodium-catalyzed hydroformylation: the use of Per(2,6-di-O-methyl)-l²-cyclodextrin as inverse phase transfer catalyst. Tetrahedron Letters, 1995, 36, 9481-9484.	0.7	97
4	Cyclodextrins as Emerging Therapeutic Tools in the Treatment of Cholesterol-Associated Vascular and Neurodegenerative Diseases. Molecules, 2016, 21, 1748.	1.7	94
5	Behavior of α-, β-, and γ-Cyclodextrins and Their Derivatives on an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 745-751.	1.3	93
6	Cyclodextrins and their applications in aqueous-phase metal-catalyzed reactions. Comptes Rendus Chimie, 2011, 14, 149-166.	0.2	92
7	Biphasic aqueous organometallic catalysis promoted by cyclodextrins: Can surface tension measurements explain the efficiency of chemically modified cyclodextrins?. Journal of Colloid and Interface Science, 2007, 307, 481-487.	5.0	77
8	Unconventional media and technologies for starch etherification and esterification. Green Chemistry, 2018, 20, 1152-1168.	4.6	75
9	Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified β-cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity. Journal of Molecular Catalysis A, 2001, 176, 105-116.	4.8	70
10	Sulfonated Xantphos Ligand and Methylated Cyclodextrin:Â A Winning Combination for Rhodium-Catalyzed Hydroformylation of Higher Olefins in Aqueous Medium. Organometallics, 2005, 24, 2070-2075.	1.1	66
11	Deep eutectic solvents as green absorbents of volatile organic pollutants. Environmental Chemistry Letters, 2017, 15, 747-753.	8.3	66
12	High-Pressure31P{1H}â€NMR Studies of RhH(CO)(TPPTS)3 in the Presence of Methylated Cyclodextrins: New Light on Rhodium-Catalyzed Hydroformylation Reaction Assisted by Cyclodextrins. Advanced Synthesis and Catalysis, 2004, 346, 425-431.	2.1	59
13	Wacker oxidation of various olefins in the presence of per(2,6-di-O-methyl)-β-cyclodextrin: mechanistic investigations of a multistep catalysis in a solvent-free two-phase system. Journal of Molecular Catalysis A, 1996, 109, 27-35.	4.8	58
14	Chemically Modified Cyclodextrins: An Attractive Class of Supramolecular Hosts for the Development of Aqueous Biphasic Catalytic Processes. Sustainability, 2009, 1, 924-945.	1.6	55
15	Chemically modified β-cyclodextrins in biphasic catalysis: a fruitful contribution of the host–guest chemistry to the transition-metal catalyzed reactions. Catalysis Today, 1999, 48, 245-253.	2.2	54
16	Cyclodextrins as inverse phase transfer catalysts for the biphasic catalytic hydrogenation of aldehydes: a green and easy alternative to conventional mass transfer promoters. Green Chemistry, 2002, 4, 188-193.	4.6	53
17	Cyclodextrins or Calixarenes: What is the Best Mass Transfer Promoter for Suzuki Cross-Coupling Reactions in Water?. Advanced Synthesis and Catalysis, 2004, 346, 83-89.	2.1	53
18	Self-Assembled Supramolecular Bidentate Ligands for Aqueous Organometallic Catalysis. Angewandte Chemie - International Edition, 2007, 46, 3040-3042.	7.2	53

#	Article	IF	CITATIONS
19	An N-heterocyclic carbene ligand based on a β-cyclodextrin–imidazolium salt: synthesis, characterization of organometallic complexes and Suzuki coupling. New Journal of Chemistry, 2011, 35, 2061.	1.4	53
20	Rhodium-Catalyzed Hydroformylation Promoted by Modified Cyclodextrins:Current Scope and Future Developments. Current Organic Synthesis, 2008, 5, 162-172.	0.7	50
21	Low melting mixtures based on β-cyclodextrin derivatives and N,N′-dimethylurea as solvents for sustainable catalytic processes. Green Chemistry, 2014, 16, 3876-3880.	4.6	50
22	Effects of γ- and Hydroxypropyl-γ-cyclodextrins on the Transport of Doxorubicin across an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 1115-1120.	1.3	48
23	Methylated β-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood–brain barrier. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2154-2157.	1.0	48
24	First evidence of molecular recognition between cyclodextrins and a water-soluble ligand used in aqueous phase organometallic catalysis. New Journal of Chemistry, 1999, 23, 469-472.	1.4	47
25	Cyclodextrin–phosphane possessing a guest-tunable conformation for aqueous rhodium-catalyzed hydroformylation. Chemical Communications, 2012, 48, 753-755.	2.2	47
26	Catalysis in Cyclodextrin-Based Unconventional Reaction Media: Recent Developments and Future Opportunities. ACS Sustainable Chemistry and Engineering, 2017, 5, 3598-3606.	3.2	46
27	Aqueous rhodium-catalyzed hydroformylation of 1-decene in the presence of randomly methylated β-cyclodextrin and 1,3,5-triaza-7-phosphaadamantane derivatives. Applied Catalysis A: General, 2009, 362, 62-66.	2.2	44
28	Functionalized Cyclodextrins as First and Second Coordination Sphere Ligands for Aqueous Organometallic Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 1571-1578.	1.0	44
29	A very useful and efficient Wacker oxidation of higher α-olefins in the presence of per(2,6-di-O-methyl)-β-cyclodextrin. Tetrahedron Letters, 1995, 36, 387-388.	0.7	42
30	Chemically modified β-cyclodextrins: Efficient supramolecular carriers for the biphasic hydrogenation of water-insoluble aldehydes. Tetrahedron Letters, 1998, 39, 2959-2960.	0.7	41
31	Cyclodextrins as Mass Transfer Additives in Aqueous Organometallic Catalysis. Current Organic Chemistry, 2010, 14, 1296-1307.	0.9	41
32	First Evidence of Cyclodextrin Inclusion Complexes in a Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 6345-6351.	3.2	41
33	Diametrically Opposed Carbenes on an α yclodextrin: Synthesis, Characterization of Organometallic Complexes and Suzuki–Miyaura Coupling in Ethanol and in Water. European Journal of Organic Chemistry, 2013, 2013, 3691-3699.	1.2	40
34	Thermodynamic insight into the origin of the inclusion of monosulfonated isomers of triphenylphosphine into the β-cyclodextrin cavity. Carbohydrate Research, 2002, 337, 281-287.	1.1	39
35	Heptakis(2,3-di-O-methyl-6-O-sulfopropyl)-β-cyclodextrin: A Genuine Supramolecular Carrier for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2006, 348, 379-386.	2.1	38
36	Hydroformylation of 1-decene in aqueous medium catalysed by rhodium–alkyl sulfonated diphosphines system in the presence of methylated cyclodextrins. How the flexibility of the diphosphine backbone influences the regioselectivity. New Journal of Chemistry, 2006, 30, 377.	1.4	37

#	Article	IF	CITATIONS
37	Aqueous hydroformylation reaction mediated by randomly methylated β-cyclodextrin: How substitution degree influences catalytic activity and selectivity. Journal of Molecular Catalysis A, 2009, 303, 72-77.	4.8	37
38	Rhodium catalyzed hydroformylation of 1-decene in low melting mixtures based on various cyclodextrins and N,Nâ \in^2 -dimethylurea. Catalysis Communications, 2015, 63, 62-65.	1.6	37
39	Ruthenium-containing Î ² -cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds. Green Chemistry, 2015, 17, 2444-2454.	4.6	37
40	Biphasic Aqueous Organometallic Catalysis Promoted by Cyclodextrins: How to Design the Waterâ€Soluble Phenylphosphane to Avoid Interaction with Cyclodextrin. Advanced Synthesis and Catalysis, 2008, 350, 609-618.	2.1	36
41	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 38, 361-379.	1.6	35
42	Easily Accessible Mono―and Polytopic Âβ yclodextrin Hosts by Click Chemistry. European Journal of Organic Chemistry, 2008, 2008, 5723-5730.	1.2	35
43	A convenient synthesis of phenylpropanoic acids: the palladium catalyzed hydrocarboxylation of styrene derivatives in a two-phase system. Journal of Molecular Catalysis A, 1999, 138, 53-57.	4.8	33
44	One and Two-dimensional NMR Investigations of the Inclusion of the Monosulfonated Triphenylphosphine in the β-cyclodextrin. Supramolecular Chemistry, 2002, 14, 11-20.	1.5	33
45	Molecular Recognition Between a Water-Soluble Organometallic Complex and a ?-Cyclodextrin: First Example of Second-Sphere Coordination Adducts Possessing a Catalytic Activity. Advanced Synthesis and Catalysis, 2004, 346, 1449-1456.	2.1	33
46	Synthesis, Rhodium Complexes and Catalytic Applications of a New Waterâ€Soluble Triphenylphosphaneâ€Modified βâ€Cyclodextrin. Advanced Synthesis and Catalysis, 2011, 353, 1325-1334.	2.1	32
47	Chemically Modifiedβ-Cyclodextrins as Supramolecular Carriers in the Biphasic Palladium-Catalyzed Cleavage of Allylic Carbonates: Activity Enhancement and Substrate-Selective Catalysis. European Journal of Organic Chemistry, 1999, 1999, 3127-3129.	1.2	31
48	Rhodium Complexes Non-Covalently Bound to Cyclodextrins: Novel Water-Soluble Supramolecular Catalysts for the Biphasic Hydroformylation of Higher Olefins. Chemistry - A European Journal, 2005, 11, 6228-6236.	1.7	31
49	Water-Soluble Triphenylphosphane-3,3′,3′′-tricarboxylate (m-TPPTC) Ligand and Methylated Cyclodextrins: A New Combination for Biphasic Rhodium-Catalyzed Hydroformylation of Higher Olefins. Advanced Synthesis and Catalysis, 2006, 348, 1547-1552.	2.1	30
50	Cyclodextrin/Amphiphilic Phosphane Mixed Systems and their Applications in Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 1337-1346.	2.1	30
51	New Phosphane Based on a β yclodextrin, Exhibiting a Solventâ€Tunable Conformation, and its Catalytic Properties. Chemistry - A European Journal, 2010, 16, 10195-10201.	1.7	29
52	Complexation of Phosphine Ligands with Peracetylated β-Cyclodextrin in Supercritical Carbon Dioxide:Â Spectroscopic Determination of Equilibrium Constants. Journal of Physical Chemistry B, 2007, 111, 2573-2578.	1.2	28
53	A cyclodextrin dimer as a supramolecular reaction platform for aqueous organometallic catalysis. Chemical Communications, 2013, 49, 6989.	2.2	28
54	β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells. Frontiers in Physiology, 2016, 7, 185.	1.3	28

#	Article	IF	CITATIONS
55	Unexpected Effect of Cyclodextrins on Water-Soluble Rhodium Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 595-599.	1.0	27
56	Properties and Catalytic Activities of New Easilyâ€Made Amphiphilic Phosphanes for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 1193-1203.	2.1	27
57	Recent developments in cyclodextrinâ€mediated aqueous biphasic hydroformylation and tsuji–trost reactions. Applied Organometallic Chemistry, 2015, 29, 580-587.	1.7	26
58	Convenient synthesis of new amphiphilic triphenylphosphine analogues for aqueous biphasic catalysis. Tetrahedron Letters, 2001, 42, 8837-8840.	0.7	24
59	Aqueous biphasic hydroformylation in the presence of cyclodextrins mixtures: evidence of a positive synergistic effect. Dalton Transactions, 2012, 41, 8643.	1.6	24
60	β-Cyclodextrins modified by alkyl and poly(ethylene oxide) chains: A novel class of mass transfer additives for aqueous organometallic catalysis. Journal of Molecular Catalysis A, 2010, 318, 8-14.	4.8	23
61	Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation. Dalton Transactions, 2012, 41, 13359.	1.6	23
62	Phosphane-Based Cyclodextrins as Mass Transfer Agents and Ligands for Aqueous Organometallic Catalysis. Molecules, 2012, 17, 13062-13072.	1.7	21
63	Enhance the rheological and mechanical properties of clayey materials by adding starches. Construction and Building Materials, 2017, 139, 602-610.	3.2	21
64	Synthesis and characterization of a new photoinduced switchable β-cyclodextrin dimer. Beilstein Journal of Organic Chemistry, 2014, 10, 2874-2885.	1.3	20
65	Water-soluble phosphane-substituted cyclodextrin as an effective bifunctional additive in hydroformylation of higher olefins. Catalysis Science and Technology, 2017, 7, 3823-3830.	2.1	20
66	A Propertyâ€Matched Waterâ€Soluble Analogue of the Benchmark Ligand PPh ₃ . ChemSusChem, 2008, 1, 631-636.	3.6	19
67	Robust Mesoporous CoMo/γ-Al ₂ O ₃ Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method. ACS Applied Materials & Interfaces, 2018, 10, 12562-12579.	4.0	18
68	Rhodium-Catalyzed Aqueous Biphasic Olefin Hydroformylation Promoted by Amphiphilic Cyclodextrins. Catalysts, 2020, 10, 56.	1.6	18
69	Continuous hydroformylation of 1-decene in an aqueous biphasic system enabled by methylated cyclodextrins. Green Chemistry, 2020, 22, 3809-3819.	4.6	18
70	Hydrohydroxymethylation of Ethyl Ricinoleate and Castor Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 9444-9454.	3.2	18
71	Comparative Raman spectroscopy study of sulfonate-substituted triphenylphosphines. Vibrational Spectroscopy, 1999, 20, 165-172.	1.2	17
72	Complexation of Monosulfonated Triphenylphosphine with Chemically Modified β-Cyclodextrins: Effect of Substituents on the Stability of Inclusion Complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 51, 79-85.	1.6	17

5

#	Article	IF	CITATIONS
73	Ring opening polymerization of ε-caprolactone in the presence of wet β-cyclodextrin: effect of the operative pressure and of water molecules in the β-cyclodextrin cavity. RSC Advances, 2016, 6, 90290-90299.	1.7	17
74	Rhodium catalyzed hydroformylation assisted by cyclodextrins in biphasic medium: Can sulfonated naphthylphosphanes lead to active, selective and recyclable catalytic species?. Catalysis Today, 2015, 247, 47-54.	2.2	15
75	Supramolecular Trapping of Phosphanes by Cyclodextrins: A General Approach to Generate Phosphane Coordinatively Unsaturated Organometallic Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1611-1619.	1.0	14
76	Cyclodextrins Modified by Metal-Coordinating Groups for Aqueous Organometallic Catalysis: What Remains to be Done?. Current Organocatalysis, 2015, 3, 24-31.	0.3	14
77	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 42, 269-274.	1.6	13
78	New Lipidyl-Cyclodextrins Obtained by Ring Opening of Methyl Oleate Epoxide Using Ball Milling. Biomolecules, 2020, 10, 339.	1.8	13
79	Multiscale Structure of Starches Grafted with Hydrophobic Groups: A New Analytical Strategy. Molecules, 2020, 25, 2827.	1.7	13
80	Complexation of monosulfonated triphenylphosphine oxides with β-cyclodextrin: spectroscopic study and consequence on the behaviour of cyclodextrins in aqueous-phase organometallic catalysis. New Journal of Chemistry, 2003, 27, 1603-1608.	1.4	12
81	Reductive Hydroformylation of Isosorbide Diallyl Ether. Molecules, 2021, 26, 7322.	1.7	11
82	Adamantoylated monosaccharides: new compounds for modification of the properties of cyclodextrin-containing materials. Carbohydrate Research, 2005, 340, 1461-1468.	1.1	10
83	Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis. Catalysis Communications, 2012, 29, 77-81.	1.6	10
84	Hydroformylation in Aqueous Biphasic Media Assisted by Molecular Receptors. Topics in Current Chemistry, 2013, 342, 49-78.	4.0	8
85	Anionic Amphiphilic Cyclodextrins Bearing Oleic Grafts for the Stabilization of Ruthenium Nanoparticles Efficient in Aqueous Catalytic Hydrogenation. ChemCatChem, 2020, 12, 1013-1018.	1.8	8
86	New water-soluble Schiff base ligands based on β-cyclodextrin for aqueous biphasic hydroformylation reaction. Pure and Applied Chemistry, 2018, 90, 845-855.	0.9	7
87	Aqueous Biphasic Hydroaminomethylation Enabled by Methylated Cyclodextrins: Sensitivity Analysis for Transfer into a Continuous Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 273-283.	3.2	7
88	Interesterification of triglycerides with methyl acetate for biodiesel production using a cyclodextrin-derived SnO@γ-Al2O3 composite as heterogeneous catalyst. Fuel, 2022, 321, 124026.	3.4	7
89	Interaction of waterâ€soluble triphenylphosphines with βâ€cyclodextrin: a quantum chemistry study. Journal of Physical Organic Chemistry, 2011, 24, 1129-1135.	0.9	6
90	Oleic Acid Based Cyclodextrins for the Development of New Hydrosoluble Amphiphilic Compounds. European Journal of Organic Chemistry, 2019, 2019, 1236-1241.	1.2	6

#	Article	IF	CITATIONS
91	Synthesis of 2-Hydroxydodecyl Starch Ethers: Importance of the Purification Process. Industrial & Engineering Chemistry Research, 2019, 58, 2437-2444.	1.8	5
92	Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins Can Alter the Coordination Sphere?. Molecules, 2017, 22, 140.	1.7	4
93	Highly Waterâ€Soluble Amphiphilic Cyclodextrins Bearing Branched and Cyclic Oleic Grafts. European Journal of Organic Chemistry, 2019, 2019, 4863-4868.	1.2	4
94	Unnatural cyclodextrins can be accessed from enzyme-mediated dynamic combinatorial libraries. Chemical Communications, 2022, 58, 2287-2290.	2.2	4
95	Tetrasulfonated 1,2â€Bis(diphenylphosphanyl)ethane as a Building Block for the Synthesis of Disulfonated Alkyldiphenylphosphanes. European Journal of Organic Chemistry, 2015, 2015, 5509-5512.	1.2	2
96	Cleavage of Benzyl Phosphonium Salts as Efficient Bypass for the Synthesis of Disulfonated Alkyldiphenylphosphanes Bearing an Oleum‧ensitive Alkyl Group. European Journal of Organic Chemistry, 2016, 2016, 3322-3325.	1.2	2
97	Epimerization of isosorbide catalyzed by homogeneous ruthenium-phosphine complexes: A new step towards an industrial process. Inorganica Chimica Acta, 2021, 515, 120094.	1.2	2
98	Asymmetric hydrogenation of ethyl pyruvate over aqueous dispersed Pt nanoparticles stabilized by a cinchonidine-functionalized β-cyclodextrin. Catalysis Communications, 2021, 150, 106272.	1.6	2
99	Rhodium-Catalyzed Hydroformylation Promoted by Modified Cyclodextrins: Current Scope and Future Developments. , 2013, , 36-63.		2
100	Phosphocontaining Cyclodextrins as a New Class of Supramolecular Structures. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1489-1492.	0.8	0