Martin Ostoja-Starzewski

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4068118/martin-ostoja-starzewski-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 252
 6,465
 39
 73

 papers
 citations
 h-index
 g-index

 278
 7,359
 2.8
 6.59

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
252	MRE-based modeling of head trauma 2022 , 139-152		
251	Fractional telegraph equation under moving time-harmonic impact. <i>International Journal of Heat and Mass Transfer</i> , 2022 , 182, 121958	4.9	О
250	Lattice and Particle Modeling of Damage Phenomena 2022 , 1143-1179		
249	A convolutional-iterative solver for nonlinear dynamical systems. <i>Applied Mathematics Letters</i> , 2022 , 130, 107990	3.5	О
248	Spontaneous Negative Entropy Increments in Granular Flows. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2021 , 88, 031010	2.7	2
247	Mach Fronts in Random Media with Fractal and Hurst Effects. Fractal and Fractional, 2021, 5, 229	3	1
246	Spatial Behaviour of Solutions of the Moore-Gibson-Thompson Equation. <i>Journal of Mathematical Fluid Mechanics</i> , 2021 , 23, 1	1.4	3
245	On streamwise velocity spectra models with fractal and long-memory effects. <i>Physics of Fluids</i> , 2021 , 33, 035116	4.4	6
244	Averaging of turbulent micropolar media: turbulent couple-stress, heat flux, and energy. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 2021 , 72, 1	1.6	1
243	Convolution finite element method: an alternative approach for time integration and time-marching algorithms. <i>Computational Mechanics</i> , 2021 , 68, 667-696	4	O
242	Doppler effect described by the solutions of the Cattaneo telegraph equation. <i>Acta Mechanica</i> , 2021 , 232, 725-740	2.1	4
241	Scaling in Anti-Plane Elasticity on Random Shear Modulus Fields with Fractal and Hurst Effects. <i>Fractal and Fractional</i> , 2021 , 5, 255	3	1
240	Modeling and Simulation of Head Trauma Utilizing White Matter Properties from Magnetic Resonance Elastography. <i>Modelling</i> , 2020 , 1, 225-241	2.5	6
239	Impact force and moment problems on random mass density fields with fractal and Hurst effects. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 2019059		9
238	IBVP for electromagneto-elastic materials: variational approach. <i>Mathematics and Mechanics of Complex Systems</i> , 2020 , 8, 47-67	3.2	1
237	Thermo-poromechanics of fractal media. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 20190288	3	23
236	Violations of the Clausius-Duhem inequality in Couette flows of granular media. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2020 , 476, 20200207	2.4	4

(2018-2020)

235	RVE Problem: Mathematical aspects and related stochastic mechanics. <i>International Journal of Engineering Science</i> , 2020 , 146, 103169	5.7	6
234	Fracture of beams with random field properties: Fractal and Hurst effects. <i>International Journal of Solids and Structures</i> , 2020 , 191-192, 243-253	3.1	3
233	Towards stochastic continuum damage mechanics. <i>International Journal of Solids and Structures</i> , 2020 , 184, 202-210	3.1	1
232	Finite Element Methods in Human Head Impact Simulations: A Review. <i>Annals of Biomedical Engineering</i> , 2019 , 47, 1832-1854	4.7	38
231	Mechanical and thermal couplings in helical strands*. <i>Journal of Thermal Stresses</i> , 2019 , 42, 185-212	2.2	2
230	Electrostatic and magnetostatic properties of random materials. <i>Physical Review E</i> , 2019 , 99, 022120	2.4	4
229	On the Hydrodynamic Stability of a Lennard-Jones Molecular Fluid. <i>Journal of Statistical Physics</i> , 2019 , 177, 61-77	1.5	4
228	Stress field formulation of linear electro-magneto-elastic materials. <i>Mathematics and Mechanics of Solids</i> , 2019 , 24, 3806-3822	2.3	2
227	Thermoelastic waves in helical strands with Maxwell Cattaneo heat conduction. <i>Theoretical and Applied Mechanics Letters</i> , 2019 , 9, 302-307	1.8	2
226	Anti-plane shear Lamb's problem on random mass density fields with fractal and Hurst effects.		
	Evolution Equations and Control Theory, 2019 , 8, 231-246	2	4
225	Continuum Homogenization of Fractal Media 2019 , 905-935	2	5
225		2	
	Continuum Homogenization of Fractal Media 2019 , 905-935	1.8	5
224	Continuum Homogenization of Fractal Media 2019 , 905-935 Tensor-Valued Random Fields for Continuum Physics 2019 , Elastodynamics of a multilayered transversely isotropic half-space due to the rigid motion of		5
224	Continuum Homogenization of Fractal Media 2019, 905-935 Tensor-Valued Random Fields for Continuum Physics 2019, Elastodynamics of a multilayered transversely isotropic half-space due to the rigid motion of foundation. <i>Wave Motion</i> , 2019, 88, 106-128 Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite	1.8	5 14 6
224	Continuum Homogenization of Fractal Media 2019, 905-935 Tensor-Valued Random Fields for Continuum Physics 2019, Elastodynamics of a multilayered transversely isotropic half-space due to the rigid motion of foundation. Wave Motion, 2019, 88, 106-128 Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite element. Acta Mechanica, 2019, 230, 1725-1743 Heat conduction in porcine muscle and blood: experiments and time-fractional telegraph equation	1.8	51465
224 223 222 221	Continuum Homogenization of Fractal Media 2019, 905-935 Tensor-Valued Random Fields for Continuum Physics 2019, Elastodynamics of a multilayered transversely isotropic half-space due to the rigid motion of foundation. Wave Motion, 2019, 88, 106-128 Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite element. Acta Mechanica, 2019, 230, 1725-1743 Heat conduction in porcine muscle and blood: experiments and time-fractional telegraph equation model. Journal of the Royal Society Interface, 2019, 16, 20190726	1.8 2.1 4.1	5146514

217	Towards Continuum Mechanics with Spontaneous Violations of the Second Law of Thermodynamics. <i>Advanced Structured Materials</i> , 2018 , 633-640	0.6	
216	Does a Fractal Microstructure Require a Fractional Viscoelastic Model?. <i>Fractal and Fractional</i> , 2018 , 2, 12	3	6
215	Random Fields Related to the Symmetry Classes of Second-Order Symmetric Tensors. <i>Springer Proceedings in Mathematics and Statistics</i> , 2018 , 173-185	0.2	1
214	Three-dimensional vibrations of a helically wound cable modeled as a Timoshenko rod. <i>Acta Mechanica</i> , 2018 , 229, 677-695	2.1	3
213	Oldroyd fluids with hyperbolic heat conduction. <i>Mechanics Research Communications</i> , 2018 , 93, 108-113	3 2.2	2
212	Shielding effectiveness and bandgaps of interpenetrating phase composites based on the Schwarz Primitive surface. <i>Journal of Applied Physics</i> , 2018 , 124, 175102	2.5	12
211	Peristatic solutions for finite one- and two-dimensional systems. <i>Mathematics and Mechanics of Solids</i> , 2017 , 22, 1639-1653	2.3	12
210	Representing stochastic damage evolution in disordered media as a jump Markov process using the fiber bundle model. <i>International Journal of Damage Mechanics</i> , 2017 , 26, 147-161	3	3
209	Shear-thinning of molecular fluids in Couette flow. <i>Physics of Fluids</i> , 2017 , 29, 023103	4.4	12
208	Scaling of slip avalanches in sheared amorphous materials based on large-scale atomistic simulations. <i>Physical Review E</i> , 2017 , 95, 032902	2.4	10
207	Dynamic interaction of plates in an inhomogeneous transversely isotropic space weakened by a crack. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2017 , 97, 1338-1357	1	4
206	Effect of cerebrospinal fluid modeling on spherically convergent shear waves during blunt head trauma. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2017 , 33, e2881	2.6	10
205	Continuum Physics with Violations of the Second Law of Thermodynamics. <i>Advanced Structured Materials</i> , 2017 , 181-192	0.6	1
204	Fractal planetary rings: Energy inequalities and random field model. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1750236	1.1	8
203	Acceleration waves on random fields with fractal and Hurst effects. Wave Motion, 2017, 74, 134-150	1.8	8
202	Electromagnetic characteristics of systems of prolate and oblate ellipsoids. <i>Journal of Applied Physics</i> , 2017 , 122, 185101	2.5	4
201	A Random Field Formulation of Hookel Law in All Elasticity Classes. Journal of Elasticity, 2017, 127, 269	-31032	25
200	Admitting Spontaneous Violations of the Second Law in Continuum Thermomechanics. <i>Entropy</i> , 2017 , 19, 78	2.8	2

(2015-2016)

199	Second law violations, continuum mechanics, and permeability. <i>Continuum Mechanics and Thermodynamics</i> , 2016 , 28, 489-501	3.5	11
198	On the dilatational wave motion in anisotropic fractal solids. <i>Mathematics and Computers in Simulation</i> , 2016 , 127, 114-130	3.3	4
197	Scaling to RVE in Random Media. Advances in Applied Mechanics, 2016, 111-211	10	33
196	Spectral expansions of homogeneous and isotropic tensor-valued random fields. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 2016 , 67, 1	1.6	11
195	Local and nonlocal material models, spatial randomness, and impact loading. <i>Archive of Applied Mechanics</i> , 2016 , 86, 39-58	2.2	11
194	Finite Element Solutions to the Bending Stiffness of a Single-Layered Helically Wound Cable With Internal Friction. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2016 , 83,	2.7	24
193	Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments. <i>Wave Motion</i> , 2016 , 60, 73-83	1.8	21
192	From Second Law Violations to Continuum Mechanics 2016 , 175-186		
191	Tensor-Valued Random Fields in Continuum Physics. <i>Springer Tracts in Mechanical Engineering</i> , 2016 , 75-87	0.3	
190	Continuum Homogenization of Fractal Media 2016 , 1-31		1
190 189	Continuum Homogenization of Fractal Media 2016 , 1-31 A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua. <i>Advanced Structured Materials</i> , 2016 , 425-441	0.6	13
	A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar	0.6	
189	A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua. <i>Advanced Structured Materials</i> , 2016 , 425-441 Lamb's problem on random mass density fields with fractal and Hurst effects. <i>Proceedings of the</i>		13
189	A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua. <i>Advanced Structured Materials</i> , 2016 , 425-441 Lamb's problem on random mass density fields with fractal and Hurst effects. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2016 , 472, 20160638 Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation	2.4	13
189 188 187	A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua. Advanced Structured Materials, 2016, 425-441 Lamb's problem on random mass density fields with fractal and Hurst effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160638 Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation model. Journal of Applied Physics, 2016, 120, 045105 Experimental and computational study of shielding effectiveness of polycarbonate carbon	2.4 2.5 2.5	13 8 34
189 188 187 186	A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua. Advanced Structured Materials, 2016, 425-441 Lamb's problem on random mass density fields with fractal and Hurst effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160638 Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation model. Journal of Applied Physics, 2016, 120, 045105 Experimental and computational study of shielding effectiveness of polycarbonate carbon nanocomposites. Journal of Applied Physics, 2016, 120, 145103 Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites.	2.4 2.5 2.5	13 8 34 18
189 188 187 186	A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua. Advanced Structured Materials, 2016, 425-441 Lamb's problem on random mass density fields with fractal and Hurst effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160638 Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation model. Journal of Applied Physics, 2016, 120, 045105 Experimental and computational study of shielding effectiveness of polycarbonate carbon nanocomposites. Journal of Applied Physics, 2016, 120, 145103 Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 2015080 Continuum mechanics versus violations of the second law of thermodynamics. Journal of Thermal	2.4 2.5 2.5	13 8 34 18 8

181	Edges of Saturn's rings are fractal. SpringerPlus, 2015 , 4, 158		6
180	Scaling and bounds in thermal conductivity of planar Gaussian correlated microstructures. <i>Journal of Applied Physics</i> , 2015 , 117, 104301	2.5	8
179	Harmonic oscillator driven by random processes having fractal and Hurst effects. <i>Acta Mechanica</i> , 2015 , 226, 3653-3672	2.1	9
178	Mesoscale bounds in viscoelasticity of random composites. <i>Mechanics Research Communications</i> , 2015 , 68, 98-104	2.2	11
177	Stochastic Continuum Damage Mechanics Using Spring Lattice Models. <i>Applied Mechanics and Materials</i> , 2015 , 784, 350-357	0.3	1
176	Scale-dependent homogenization of random composites as micropolar continua. <i>European Journal of Mechanics, A/Solids</i> , 2015 , 49, 396-407	3.7	101
175	Scale-Dependent Homogenization of Random Hyperbolic Thermoelastic Solids. <i>Journal of Elasticity</i> , 2015 , 118, 243-250	1.5	4
174	Tunneling-percolation behavior of polydisperse prolate and oblate ellipsoids. <i>Journal of Applied Physics</i> , 2015 , 118, 154306	2.5	27
173	Electrical properties of random checkerboards at finite scales. AIP Advances, 2015, 5, 017131	1.5	6
172	Responses of first-order dynamical systems to Matth, Cauchy, and Dagum excitations. <i>Mathematics and Mechanics of Complex Systems</i> , 2015 , 3, 27-41	3.2	6
171	A three-dimensional model of fine particle retention during percolation through a fiber mat. <i>Tappi Journal</i> , 2015 , 14, 546-554	0.5	1
170	Lattice and Particle Modeling of Damage Phenomena 2015 , 203-238		3
169	Viscothermoelasticity with finite wave speeds: thermomechanical laws. <i>Acta Mechanica</i> , 2014 , 225, 12	77 <u>2</u> 1 <u>1</u> 28	5 3
168	From fractal media to continuum mechanics. <i>ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik</i> , 2014 , 94, 373-401	1	42
167	Elastic-plastic-brittle transitions and avalanches in disordered media. <i>Physical Review Letters</i> , 2014 , 112, 045503	7.4	20
166	A mechanisms-based model for dynamic behavior and fracture of geomaterials. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2014 , 72, 277-282	6	16
165	Elastodynamics in micropolar fractal solids. <i>Mathematics and Mechanics of Solids</i> , 2014 , 19, 117-134	2.3	7
164	Continuum mechanics beyond the second law of thermodynamics. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2014 , 470, 20140531	2.4	17

(2012-2014)

163	Fractal Shear Bands at Elastic-Plastic Transitions in Random Mohr-Coulomb Materials. <i>Journal of Engineering Mechanics - ASCE</i> , 2014 , 140, 04014072	2.4	4
162	Statistically isotropic tensor random fields: Correlation structures. <i>Mathematics and Mechanics of Complex Systems</i> , 2014 , 2, 209-231	3.2	15
161	Particulate random composites homogenized as micropolar materials. <i>Meccanica</i> , 2014 , 49, 2719-2727	2.1	27
160	The spectral expansion of the elasticity random field 2014 ,		3
159	Morphological study of elastic-plastic-brittle transitions in disordered media. <i>Physical Review E</i> , 2014 , 90, 042405	2.4	5
158	Bernoulli E uler beams with random field properties under random field loads: fractal and Hurst effects. <i>Archive of Applied Mechanics</i> , 2014 , 84, 1595-1626	2.2	14
157	Comment on "Hydrodynamics of fractal continuum flow" and "Map of fluid flow in fractal porous medium into fractal continuum flow". <i>Physical Review E</i> , 2013 , 88, 057001	2.4	12
156	Scaling function in conductivity of planar random checkerboards. <i>Computational Materials Science</i> , 2013 , 79, 252-261	3.2	17
155	Stiffness tensor random fields through upscaling of planar random materials. <i>Probabilistic Engineering Mechanics</i> , 2013 , 34, 131-156	2.6	19
154	From Random Fields to Classical or Generalized Continuum Models. <i>Procedia IUTAM</i> , 2013 , 6, 31-34		1
153	Electromagnetism on anisotropic fractal media. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 2013 , 64, 381-390	1.6	24
152	Acoustic-elastodynamic interaction in isotropic fractal media. <i>European Physical Journal: Special Topics</i> , 2013 , 222, 1951-1960	2.3	8
151	On Thermodynamic Restrictions in Peridynamics. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2013 , 80,	2.7	8
150	SCALING AND HOMOGENIZATION IN SPATIALLY RANDOM COMPOSITES. <i>Computational and Experimental Methods in Structures</i> , 2013 , 61-101		5
149	Fractal Geometric Characterization of Functionally Graded Materials. <i>Journal of Nanomechanics & Micromechanics</i> , 2013 , 3, 04013001		8
148	Fracture model for cemented aggregates. AIP Advances, 2013, 3, 012119	1.5	6
147	Lattice and Particle Modeling of Damage Phenomena 2013 , 1-32		
146	Shock waves in random viscoelastic media. <i>Acta Mechanica</i> , 2012 , 223, 1777-1788	2.1	4

145	Elasticplastic transition in three-dimensional random materials: massively parallel simulations, fractal morphogenesis and scaling functions. <i>Philosophical Magazine</i> , 2012 , 92, 2733-2758	1.6	10
144	New classes of spectral densities for lattice processes and random fields built from simple univariate margins. <i>Stochastic Environmental Research and Risk Assessment</i> , 2012 , 26, 479-490	3.5	2
143	Fractals in thermoelastoplastic materials. Journal of Mechanics of Materials and Structures, 2011, 6, 351-	-31529	3
142	Micropolar continuum mechanics of fractal media. <i>International Journal of Engineering Science</i> , 2011 , 49, 1302-1310	5.7	43
141	Dissipation Function in Hyperbolic Thermoelasticity. <i>Journal of Thermal Stresses</i> , 2011 , 34, 68-74	2.2	5
140	Waves in Fractal Media. <i>Journal of Elasticity</i> , 2011 , 104, 187-204	1.5	41
139	Macrohomogeneity condition in dynamics of micropolar media. <i>Archive of Applied Mechanics</i> , 2011 , 81, 899-906	2.2	23
138	On the wave propagation in isotropic fractal media. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 2011 , 62, 1117-1129	1.6	13
137	Fractal solids, product measures and fractional wave equations. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2011 , 467, 1214-1214	2.4	7
136	Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2011 , 467, 2896-291	2 .4	5
135	Quantifying the Anisotropy in Biological Materials. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2011 , 78,	2.7	4
134	Powerless fluxes and forces, and change of scale in irreversible thermodynamics. <i>Journal of Physics A: Mathematical and Theoretical</i> , 2011 , 44, 335002	2	9
133	Stochastic finite elements: Where is the physics?. <i>Theoretical and Applied Mechanics</i> , 2011 , 38, 379-396	0.4	11
132	On the objective rate of heat and stress fluxes. Connection with micro/nano-scale heat convection. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2011 , 15, 991-998	1.3	15
131	Waves in Fractal Media 2011 , 187-204		О
130	Hybrid Lattice Particle Modelling Approach for Polymeric Materials Subject to High Strain Rate Loads. <i>Polymers</i> , 2010 , 2, 3-30	4.5	7
129	Fractals in elastic-hardening plastic materials. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2010 , 466, 603-621	2.4	6
128	Fractal Solids, Product Measures and Continuum Mechanics. <i>Advances in Mechanics and Mathematics</i> , 2010 , 315-323	0.2	9

(2008-2010)

127	Fractal Pattern Formation at Elastic-Plastic Transition in Heterogeneous Materials. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2010 , 77,	2.7	6
126	MRI-based finite element modeling of head trauma: spherically focusing shear waves. <i>Acta Mechanica</i> , 2010 , 213, 155-167	2.1	69
125	Towards Poroelasticity of Fractal Materials 2010 , 157-164		1
124	Fractal solids, product measures and fractional wave equations. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2009 , 465, 2521-2536	2.4	82
123	Extremum and variational principles for elastic and inelastic media with fractal geometries. <i>Acta Mechanica</i> , 2009 , 205, 161-170	2.1	47
122	Fractal materials, beams, and fracture mechanics. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 2009 , 60, 1194-1205	1.6	23
121	A derivation of the MaxwellCattaneo equation from the free energy and dissipation potentials. <i>International Journal of Engineering Science</i> , 2009 , 47, 807-810	5.7	30
120	Towards scaling laws in random polycrystals. <i>International Journal of Engineering Science</i> , 2009 , 47, 13:	22-51-330) 17
119	Continuum mechanics models of fractal porous media: Integral relations and extremum principles. Journal of Mechanics of Materials and Structures, 2009 , 4, 901-912	1.2	28
118	Thermoelasticity with Finite Wave Speeds 2009 ,		125
118	Thermoelasticity with Finite Wave Speeds 2009, Universal elastic anisotropy index. <i>Physical Review Letters</i> , 2008, 101, 055504	7.4	1259
		7.4	
117	Universal elastic anisotropy index. <i>Physical Review Letters</i> , 2008 , 101, 055504 Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman	, ,	1259
117 116	Universal elastic anisotropy index. <i>Physical Review Letters</i> , 2008 , 101, 055504 Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium. <i>Physical Review E</i> , 2008 , 77, 011404 The Effect of Imperfect Contact on the Homogenization of a Micro-periodic Helix. <i>Mathematics and</i>	2.4	1259 11
117 116 115	Universal elastic anisotropy index. <i>Physical Review Letters</i> , 2008 , 101, 055504 Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium. <i>Physical Review E</i> , 2008 , 77, 011404 The Effect of Imperfect Contact on the Homogenization of a Micro-periodic Helix. <i>Mathematics and Mechanics of Solids</i> , 2008 , 13, 431-446 Response of a Helix Made of a Fractional Viscoelastic Material. <i>Journal of Applied Mechanics</i> ,	2.4	1259 11 0
117 116 115	Universal elastic anisotropy index. <i>Physical Review Letters</i> , 2008 , 101, 055504 Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium. <i>Physical Review E</i> , 2008 , 77, 011404 The Effect of Imperfect Contact on the Homogenization of a Micro-periodic Helix. <i>Mathematics and Mechanics of Solids</i> , 2008 , 13, 431-446 Response of a Helix Made of a Fractional Viscoelastic Material. <i>Journal of Applied Mechanics</i> , <i>Transactions ASME</i> , 2008 , 75, Scale-Dependent Homogenization of Inelastic Random Polycrystals. <i>Journal of Applied Mechanics</i> ,	2.4 2.3 2.7	1259 11 0
117 116 115 114 113	Universal elastic anisotropy index. <i>Physical Review Letters</i> , 2008 , 101, 055504 Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium. <i>Physical Review E</i> , 2008 , 77, 011404 The Effect of Imperfect Contact on the Homogenization of a Micro-periodic Helix. <i>Mathematics and Mechanics of Solids</i> , 2008 , 13, 431-446 Response of a Helix Made of a Fractional Viscoelastic Material. <i>Journal of Applied Mechanics</i> , <i>Transactions ASME</i> , 2008 , 75, Scale-Dependent Homogenization of Inelastic Random Polycrystals. <i>Journal of Applied Mechanics</i> , <i>Transactions ASME</i> , 2008 , 75, On the geodesic property of strain field patterns in elastoplastic composites. <i>Proceedings of the</i>	2.4 2.3 2.7	1259 11 0 2 11

109	Scaling function, anisotropy and the size of RVE in elastic random polycrystals. <i>Journal of the Mechanics and Physics of Solids</i> , 2008 , 56, 2773-2791	5	60
108	Scale Effects in Infinitesimal and Finite Thermoelasticity of Random Composites. <i>Journal of Thermal Stresses</i> , 2007 , 30, 587-603	2.2	6
107	Towards thermomechanics of fractal media. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 2007 , 58, 1085-1096	1.6	40
106	Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. <i>Applied Mathematical Modelling</i> , 2007 , 31, 417-447	4.5	125
105	Towards Thermoelasticity of Fractal Media. <i>Journal of Thermal Stresses</i> , 2007 , 30, 889-896	2.2	45
104	Lithic raw material physical properties and use-wear accrual. <i>Journal of Archaeological Science</i> , 2007 , 34, 711-722	2.9	73
103	Comparisons of the Size of the Representative Volume Element in Elastic, Plastic, Thermoelastic, and Permeable Random Microstructures. <i>International Journal for Multiscale Computational Engineering</i> , 2007 , 5, 73-82	2.4	39
102	Homogenization of a Micro-Periodic Helix with Parabolic or Hyperbolic Heat Conduction. <i>Journal of Thermal Stresses</i> , 2006 , 29, 467-483	2.2	2
101	Mesoscale bounds in finite elasticity and thermoelasticity of random composites. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2006 , 462, 1167-1180	2.4	17
100	On the size of representative volume element for Darcy law in random media. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2006 , 462, 2949-2963	2.4	49
99	Thermoelastic Damping in Nanomechanical Resonators with Finite Wave Speeds. <i>Journal of Thermal Stresses</i> , 2006 , 29, 201-216	2.2	61
98	Particle modeling of dynamic fragmentation l l: Fracture in single- and multi-phase materials. <i>Computational Materials Science</i> , 2006 , 35, 116-133	3.2	13
97	Yield of random elastoplastic materials. Journal of Mechanics of Materials and Structures, 2006, 1, 1055-	1 <u>0</u> .723	11
96	Mesoscale simulations of atmospheric flow and tracer transport in Phoenix, Arizona. <i>Meteorological Applications</i> , 2006 , 13, 235	2.1	
95	Material spatial randomness: From statistical to representative volume element. <i>Probabilistic Engineering Mechanics</i> , 2006 , 21, 112-132	2.6	380
94	Particle modeling of random crack patterns in epoxy plates. <i>Probabilistic Engineering Mechanics</i> , 2006 , 21, 267-275	2.6	31
93	Stochastic dynamics of acceleration waves in random media. <i>Mechanics of Materials</i> , 2006 , 38, 840-848	3.3	13
92	On the Size of RVE in Finite Elasticity of Random Composites. <i>Journal of Elasticity</i> , 2006 , 85, 153-173	1.5	99

(2003-2006)

91	On the scaling from statistical to representative volume element in thermoelasticity of random materials. <i>Networks and Heterogeneous Media</i> , 2006 , 1, 259-274	1.6	12
90	On elastic and viscoelastic helices. <i>Philosophical Magazine</i> , 2005 , 85, 4213-4230	1.6	9
89	Particle modeling of dynamic fragmentation-I: theoretical considerations. <i>Computational Materials Science</i> , 2005 , 33, 429-442	3.2	22
88	Scale effects in plasticity of random media: status and challenges. <i>International Journal of Plasticity</i> , 2005 , 21, 1119-1160	7.6	50
87	Spectral finite element of a helix. <i>Mechanics Research Communications</i> , 2005 , 32, 147-152	2.2	9
86	Homogenization of a micro-periodic helix. <i>Philosophical Magazine</i> , 2005 , 85, 4201-4212	1.6	3
85	Modeling of bone at a single lamella level. Biomechanics and Modeling in Mechanobiology, 2004, 3, 67-74	13.8	31
84	A numerical study of plume dispersion motivated by a mesoscale atmospheric flow over a complex terrain. <i>Applied Mathematical Modelling</i> , 2004 , 28, 957-981	4.5	8
83	Effects of microscale material randomness on the attainment of optimal structural shapes. <i>Structural and Multidisciplinary Optimization</i> , 2004 , 26, 67-76	3.6	3
82	Friction and scratch resistance of polyamide 6 modified with ionomeric ethylene/methacrylic acid copolymer. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 3866-3870	2.9	6
81	Influence of topography on the Phoenix CO2 dome: a computational study. <i>Atmospheric Science Letters</i> , 2004 , 5, 103-107	2.4	5
80	From Lattices and Composites to Micropolar Continua. <i>ICASE/LaRC Interdisciplinary Series in Science and Engineering</i> , 2004 , 175-212		6
79	Fracture of Brittle Microbeams. Journal of Applied Mechanics, Transactions ASME, 2004, 71, 424-427	2.7	6
78	Random formation, inelastic response and scale effects in paper. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2003 , 361, 965-85	3	14
77	THERMOELASTIC WAVES IN A HELIX WITH PARABOLIC OR HYPERBOLIC HEAT CONDUCTION. Journal of Thermal Stresses, 2003 , 26, 1205-1219	2.2	9
76	On the distance to blow-up of acceleration waves in random media. <i>Continuum Mechanics and Thermodynamics</i> , 2003 , 15, 21-32	3.5	6
75	Spectral finite elements for vibrating rods and beams with random field properties. <i>Journal of Sound and Vibration</i> , 2003 , 268, 779-797	3.9	20
74	Elasto-plasticity of paper. International Journal of Plasticity, 2003, 19, 2083-2098	7.6	37

73	ON THE REDUCTION OF CONSTANTS IN PLANAR COSSERAT ELASTICITY WITH EIGENSTRAINS AND EIGENCURVATURES. <i>Journal of Thermal Stresses</i> , 2003 , 26, 1221-1228	2.2	5
72	A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. <i>European Journal of Mechanics, A/Solids</i> , 2002 , 21, 465-481	3.7	46
71	Apparent elastic and elastoplastic behavior of periodic composites. <i>International Journal of Solids and Structures</i> , 2002 , 39, 199-212	3.1	49
70	Microstructural Randomness Versus Representative Volume Element in Thermomechanics. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2002 , 69, 25-35	2.7	94
69	Towards Stochastic Continuum Thermodynamics. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2002 , 27,	3.8	21
68	Lattice models in micromechanics. <i>Applied Mechanics Reviews</i> , 2002 , 55, 35-60	8.6	337
67	Apparent thermal conductivity of periodic two-dimensional composites. <i>Computational Materials Science</i> , 2002 , 25, 329-338	3.2	69
66	On geometric acoustics in random, locally anisotropic media. <i>Continuum Mechanics and Thermodynamics</i> , 2001 , 13, 131-134	3.5	3
65	Scale and boundary conditions effects in elastic properties of random composites. <i>Acta Mechanica</i> , 2001 , 148, 63-78	2.1	64
64	A micromechanically based coupled tress model of an elastic two-phase composite. <i>International Journal of Solids and Structures</i> , 2001 , 38, 1721-1735	3.1	70
63	Scale-dependent bounds on effective elastoplastic response of random composites. <i>Journal of the Mechanics and Physics of Solids</i> , 2001 , 49, 655-673	5	64
62	Crack patterns in plates with randomly placed holes: A maximum entropy approach. <i>Mechanics Research Communications</i> , 2001 , 28, 193-198	2.2	3
61	Michell trusses in the presence of microscale material randomness: limitation of optimality. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 1787-179	7 ·4	3
60	Mechanics of Random Media as a Tool for Scale Effects in Ice Fields. <i>Solid Mechanics and Its Applications</i> , 2001 , 439-448	0.4	
59	Mechanics of Random Materials 2001 , 93-161		9
58	Particle sieving in a random fiber network. <i>Applied Mathematical Modelling</i> , 2000 , 24, 523-534	4.5	25
57	Random Fiber Networks and Special Elastic Orthotropy of Paper. <i>Journal of Elasticity</i> , 2000 , 60, 131-149	1.5	40
56	Universal material property in conductivity of planar random microstructures. <i>Physical Review B</i> , 2000 , 62, 2980-2982	3.3	10

55	Stochastic finite elements as a bridge between random material microstructure and global response. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1999 , 168, 35-49	5.7	52
54	Couple-stress moduli and characteristics length of a two-phase composite. <i>Mechanics Research Communications</i> , 1999 , 26, 387-396	2.2	58
53	Cinfinatique et transfert de contraintes dans des rfleaux quasi plans alfitoires de fibres. <i>Comptes Rendus De LiAcademie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie</i> , 1999 , 327, 1223-	1229	1
52	Scale effects in materials with random distributions of needles and cracks. <i>Mechanics of Materials</i> , 1999 , 31, 883-893	3.3	44
51	Fracture of random matrix-inclusion composites: scale effects and statistics. <i>International Journal of Solids and Structures</i> , 1998 , 35, 2537-2566	3.1	35
50	Random field models of heterogeneous materials. <i>International Journal of Solids and Structures</i> , 1998 , 35, 2429-2455	3.1	202
49	Scale and boundary conditions effects in elasticity and damage mechanics of random composites. <i>Studies in Applied Mechanics</i> , 1998 , 46, 65-80		6
48	Damage patterns and constitutive response of random matrix-inclusion composites. <i>Engineering Fracture Mechanics</i> , 1997 , 58, 581-606	4.2	33
47	Spring network models in elasticity and fracture of composites and polycrystals. <i>Computational Materials Science</i> , 1996 , 7, 82-93	3.2	73
46	The cauchy and characteristic boundary value problems of random rigid-perfectly plastic media. <i>International Journal of Solids and Structures</i> , 1996 , 33, 1119-1136	3.1	9
45	Composites with functionally graded interphases: Mesocontinuum concept and effective transverse conductivity. <i>Acta Materialia</i> , 1996 , 44, 2057-2066	8.4	34
44	Micromechanically based stochastic finite elements: length scales and anisotropy. <i>Probabilistic Engineering Mechanics</i> , 1996 , 11, 205-214	2.6	17
43	Brittle intergranular failure in 2D microstructures: Experiments and computer simulations. <i>Acta Materialia</i> , 1996 , 44, 4003-4018	8.4	58
42	Damage maps of disordered composites: A spring network approach. <i>International Journal of Fracture</i> , 1996 , 75, R51-R57	2.3	15
41	Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. <i>Physical Review B</i> , 1996 , 54, 278-285	3.3	66
40	Micromechanically Based Constitutive Laws and Random Fields in Solid Mechanics: Elasticity, Plasticity, and Fracture. <i>Solid Mechanics and Its Applications</i> , 1996 , 341-350	0.4	
39	Wavefront propagation in a class of random microstructures II. Non-Linear elastic grains. <i>International Journal of Non-Linear Mechanics</i> , 1995 , 30, 771-781	2.8	4
38	Linear elasticity of planar Delaunay networks. III: Self-consistent approximations. <i>Acta Mechanica</i> , 1995 , 110, 57-72	2.1	8

37	Influence of Random Geometry on Effective Properties and Damage Formation In Composite Materials. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 1994 , 116, 384-391 ^{1.8}	50
36	Micromechanics as a Basis of Continuum Random Fields. <i>Applied Mechanics Reviews</i> , 1994 , 47, S221-S2308.6	47
35	Models: Micro-Macro 1994 , 23-28	1
34	Micromechanics as a Basis of Stochastic Finite Elements and Differences: An Overview. <i>Applied Mechanics Reviews</i> , 1993 , 46, S136-S147	22
33	Micromechanics as a basis of random elastic continuum approximations. <i>Probabilistic Engineering Mechanics</i> , 1993 , 8, 107-114	35
32	On the critical amplitudes of acceleration wave to shock wave transition in white noise random media. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 1993 , 44, 865-879	5
31	Random fields and processes in mechanics of granular materials. <i>Mechanics of Materials</i> , 1993 , 16, 55-64 _{3.3}	19
30	Plastic Flow of Random Media: Micromechanics, Markov Property and Slip-Lines. <i>Applied Mechanics Reviews</i> , 1992 , 45, S75-S81	6
29	Fabrication of two-dimensional microstructures in Fe-3.25%Si Sheet. <i>Scripta Metallurgica Et Materialia</i> , 1992 , 26, 429-434	1
28	Stochastic Hill's equations for the study of errant rocket burns in orbit. <i>Celestial Mechanics and Dynamical Astronomy</i> , 1992 , 54, 295-303	1
27	Random Fields and Processes in Mechanics of Granular Materials. <i>Studies in Applied Mechanics</i> , 1992 , 31, 71-80	2
26	Wavefront propagation in a class of random microstructures. bilinear elastic grains. International Journal of Non-Linear Mechanics, 1991, 26, 655-669	8
25	Transient Waves in a Class of Random Heterogeneous Media. <i>Applied Mechanics Reviews</i> , 1991 , 44, S199 & &C	9 8
24	On Wavefront Propagation in Random Nonlinear Media 1991 , 687-698	2
23	Percolation Models as a Basis of Material Failure 1991 , 425-432	
22	Linear elasticity of planar delaunay networks. Part II: Voigt and Reuss bounds, and modification for centroids. <i>Acta Mechanica</i> , 1990 , 84, 47-61	31
21	Micromechanics model of ice fields Microscale constitutive laws. Pure and Applied Geophysics, 1990, 132, 781-802	2
20	Micromechanics model of ice fields I I: Monte Carlo simulation. <i>Pure and Applied Geophysics</i> , 1990 , 133, 229-249	7

19	A generalization of thermodynamic orthogonality to random media. <i>Zeitschrift Fur Angewandte Mathematik Und Physik</i> , 1990 , 41, 701-712	1.6	6
18	Bounds on constitutive response for a class of random material microstructures. <i>Computers and Structures</i> , 1990 , 37, 163-167	4.5	8
17	Linear elasticity of planar delaunay networks: Random field characterization of effective moduli. <i>Acta Mechanica</i> , 1989 , 80, 61-80	2.1	59
16	Mechanics of damage in a random granular microstructure: Percolation of inelastic phases. <i>International Journal of Engineering Science</i> , 1989 , 27, 315-326	5.7	4
15	Wavefront propagation in discrete random media via stochastic huygens' minor principle. <i>Journal of the Franklin Institute</i> , 1989 , 326, 281-293	4	5
14	A master-slave manipulator for excavation and construction tasks. <i>Robotics and Autonomous Systems</i> , 1989 , 4, 333-337	3.5	28
13	Damage in a Random Microstructure: Size Effects, Fractals, and Entropy Maximization. <i>Applied Mechanics Reviews</i> , 1989 , 42, S202-S212	8.6	15
12	Propagation of Rayleigh, Scholte and Stoneley waves along random boundaries. <i>Probabilistic Engineering Mechanics</i> , 1987 , 2, 64-73	2.6	2
11	Graph approach to the constitutive modelling of heterogeneous solids. <i>Mechanics Research Communications</i> , 1987 , 14, 255-262	2.2	14
10	Morphology, Microstructure and Micromechanics of Ice Fields 1987 , 437-451		2
9	Rayleigh wave scattering by a wedge: A boundary method approach. <i>Mechanics Research Communications</i> , 1986 , 13, 53-58	2.2	3
8	Probabilistic approach to the wave propagation in structured solids. <i>International Journal of Engineering Science</i> , 1984 , 22, 1123-1133	5.7	1
7	Stress Wave Propagation in Discrete Random Solids. North-Holland Mathematics Studies, 1984, 97, 267-2	278	2
6	PLANE WAVE PROPAGATION IN DISCRETE SOLIDS BY THE MONTE CARLO SIMULATION 1984 , 579-584		1
5	Dynamics of a Flexible Cylinder in Subsonic Axial Flow. <i>AIAA Journal</i> , 1981 , 19, 1467-1475	2.1	25
4	Virial theorems and virial stresses of micropolar media. <i>Journal of Micromechanics and Molecular Physics</i> ,1-4	1.4	O
3	Microstructural Randomness and Scaling in Mechanics of Materials		110
2	Elastodynamic problem on tensor random fields with fractal and Hurst effects. <i>Meccanica</i> ,1	2.1	1

Equipartition of energy in a helix. *Mathematics and Mechanics of Solids*, 108128652210890

2.3