List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40680/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	From The Cover: Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1342-1346.	7.1	1,060
2	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	6.4	764
3	Responses of Tundra Plants to Experimental Warming: Meta-Analysis of the International Tundra Experiment. Ecological Monographs, 1999, 69, 491.	5.4	524
4	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
5	Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 2007, 10, 619-627.	6.4	379
6	Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?. Journal of Ecology, 2001, 89, 984-994.	4.0	360
7	RESPONSES OF TUNDRA PLANTS TO EXPERIMENTAL WARMING:META-ANALYSIS OF THE INTERNATIONAL TUNDRA EXPERIMENT. Ecological Monographs, 1999, 69, 491-511.	5.4	270
8	Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?. Journal of Ecology, 2001, 89, 984-994.	4.0	256
9	Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Science of the Total Environment, 2019, 650, 1426-1439.	8.0	199
10	Climate vulnerability index - measure of climate change vulnerability to communities: a case of rural Lower Himalaya, India. Mitigation and Adaptation Strategies for Global Change, 2012, 17, 487-506.	2.1	191
11	Sustainable livelihood framework-based indicators for assessing climate change vulnerability and adaptation for Himalayan communities. Ecological Indicators, 2017, 79, 338-346.	6.3	186
12	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	8.0	177
13	New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy, 2016, 55, 348-351.	5.6	162
14	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141
15	Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 2017, 20, 1534-1545.	6.4	136
16	Indicators for spatial–temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecological Indicators, 2016, 60, 1008-1016.	6.3	126
17	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
18	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122

#	Article	IF	CITATIONS
19	The Multidimensional Livelihood Vulnerability Index – an instrument to measure livelihood vulnerability to change in the Hindu Kush Himalayas. Climate and Development, 2017, 9, 124-140.	3.9	116
20	Climate change adaptation in the western-Himalayas: Household level perspectives on impacts and barriers. Ecological Indicators, 2018, 84, 27-37.	6.3	113
21	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
22	Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia, 2002, 133, 168-175.	2.0	104
23	China's ecological civilization program–Implementing ecological redline policy. Land Use Policy, 2019, 81, 111-114.	5.6	98
24	Scale effects on the relationships between land characteristics and ecosystem services- a case study in Taihu Lake Basin, China. Science of the Total Environment, 2020, 716, 137083.	8.0	96
25	Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecological Indicators, 2019, 106, 105512.	6.3	95
26	Impacts of rural tourism-driven land use change on ecosystems services provision in Erhai Lake Basin, China. Ecosystem Services, 2020, 42, 101081.	5.4	80
27	Response to simulated climatic change in an alpine and subarctic pollen-risk strategist, Silene acaulis. Global Change Biology, 1997, 3, 74-79.	9.5	78
28	Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to Nature Based Climate Solutions. Catena, 2021, 207, 105667.	5.0	75
29	Plant community responses to 5Âyears of simulated climate change in meadow and heath ecosystems at a subarctic-alpine site. Oecologia, 2009, 161, 601-610.	2.0	68
30	Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals. Bioresource Technology, 2017, 226, 132-144.	9.6	67
31	Climate change vulnerability and adaptation strategies for smallholder farmers in Yangi Qala District, Takhar, Afghanistan. Ecological Indicators, 2020, 110, 105863.	6.3	65
32	Agroecology as a Climate Change Adaptation Strategy for Smallholders of Tehri-Garhwal in the Indian Himalayan Region. Small-Scale Forestry, 2017, 16, 53-63.	1.7	60
33	Mapping the effect of climate change on community livelihood vulnerability in the riparian region of Gangatic Plain, India. Ecological Indicators, 2020, 119, 106815.	6.3	58
34	Climate change vulnerability in urban slum communities: Investigating household adaptation and decision-making capacity in the Indian Himalaya. Ecological Indicators, 2018, 90, 379-391.	6.3	57
35	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	5.8	57
36	Mountain specific multi-hazard risk management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate change risk in the Indian Himalayan Region. Ecological Indicators, 2020, 118, 106700.	6.3	56

#	Article	IF	CITATIONS
37	Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications, 2021, 12, 3442.	12.8	56
38	Quantifying variations in ecosystem services in altitude-associated vegetation types in a tropical region of China. Science of the Total Environment, 2020, 726, 138565.	8.0	56
39	Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India. Journal of Mountain Science, 2016, 13, 69-82.	2.0	55
40	Spatio-temporal changes in water-related ecosystem services provision and trade-offs with food production. Journal of Cleaner Production, 2021, 286, 125316.	9.3	55
41	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
42	Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of <i>Spirulina platensis</i> . Journal of Nanotechnology, 2015, 2015, 1-6.	3.4	51
43	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Clobal Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
44	Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biology, 2017, 40, 2265-2278.	1.2	47
45	Rural development program in tribal region: A protocol for adaptation and addressing climate change vulnerability. Journal of Rural Studies, 2017, 51, 151-157.	4.7	45
46	Associations of plant functional diversity with carbon accumulation in a temperate forest ecosystem in the Indian Himalayas. Ecological Indicators, 2019, 98, 861-868.	6.3	44
47	Bryophyte and Lichen Diversity Under Simulated Environmental Change Compared with Observed Variation in Unmanipulated Alpine Tundra. Biodiversity and Conservation, 2006, 15, 4453-4475.	2.6	43
48	Spatio-temporal variation in potential habitats for rare and endangered plants and habitat conservation based on the maximum entropy model. Science of the Total Environment, 2021, 784, 147080.	8.0	43
49	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	2.3	43
50	Effects of human trampling on abundance and diversity of vascular plants, bryophytes and lichens in alpine heath vegetation, Northern Sweden. SpringerPlus, 2015, 4, 95.	1.2	42
51	Impacts of urbanization on the distribution of heavy metals in soils along the Huangpu River, the drinking water source for Shanghai. Environmental Science and Pollution Research, 2016, 23, 5222-5231.	5.3	42
52	Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil mites across alpine/subarctic tundra communities. Scientific Reports, 2017, 7, 44489.	3.3	42
53	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	12.3	42
54	Assessing climate change vulnerability of water at household level. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1471-1485.	2.1	41

JUHA M ALATALO

#	Article	IF	CITATIONS
55	Empirical assessment of adaptation to climate change impacts of mountain households: development and application of an Adaptation Capability Index. Journal of Mountain Science, 2016, 13, 1503-1514.	2.0	41
56	Mapping biodiversity conservation priorities for protected areas: A case study in Xishuangbanna Tropical Area, China. Biological Conservation, 2020, 249, 108741.	4.1	41
57	Assessing tree diversity and carbon storage during land use transitioning from shifting cultivation to indigenous agroforestry systems: Implications for REDD+ initiatives. Journal of Environmental Management, 2021, 298, 113470.	7.8	41
58	Climate Warming Consistently Reduces Grassland Ecosystem Productivity. Earth's Future, 2021, 9, e2020EF001837.	6.3	40
59	Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresource Technology, 2016, 220, 584-589.	9.6	39
60	Plants impact structure and function of bacterial communities in Arctic soils. Plant and Soil, 2016, 399, 319-332.	3.7	37
61	Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities. Scientific Reports, 2017, 7, 2571.	3.3	37
62	Effect of altitude on the sex ratio in populations of Silene acaulis (Caryophyllaceae). Nordic Journal of Botany, 1995, 15, 251-256.	0.5	36
63	Responses of lichen communities to 18 years of natural and experimental warming. Annals of Botany, 2017, 120, 159-170.	2.9	35
64	Framework of basin eco-compensation standard valuation for cross-regional water supply – A case study in northern China. Journal of Cleaner Production, 2021, 279, 123630.	9.3	35
65	Effects of neighboring vascular plants on the abundance of bryophytes in different vegetation types. Polar Science, 2012, 6, 200-208.	1.2	34
66	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
67	Impacts of different climate change regimes and extreme climatic events on an alpine meadow community. Scientific Reports, 2016, 6, 21720.	3.3	33
68	Micro-level adaptation strategies by smallholders to adapt climate change in the least developed countries (LDCs): Insights from Afghanistan. Ecological Indicators, 2020, 118, 106781.	6.3	33
69	Climate change vulnerability assessment of urban informal settlers in Nepal, a least developed country. Journal of Cleaner Production, 2021, 307, 127213.	9.3	33
70	Emission Removal Capability of India's Forest and Tree Cover. Small-Scale Forestry, 2012, 11, 61-72.	1.7	32
71	Planning for assisted colonization of plants in a warming world. Scientific Reports, 2016, 6, 28542.	3.3	32
72	Agroforestry land suitability analysis in the Eastern Indian Himalayan region. Environmental Challenges, 2021, 4, 100199.	4.2	32

#	Article	IF	CITATIONS
73	An indicator based approach for assessing the vulnerability of riparian ecosystem under the influence of urbanization in the Indian Himalayan city, Dehradun. Ecological Indicators, 2020, 119, 106796.	6.3	31
74	A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy, 2022, 12, 877.	3.0	31
75	Land use patterns and urbanization in the holy city of Varanasi, India: a scenario. Environmental Monitoring and Assessment, 2010, 167, 417-422.	2.7	30
76	Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement. SpringerPlus, 2014, 3, 157.	1.2	28
77	Correlations between Socioeconomic Drivers and Indicators of Urban Expansion: Evidence from the Heavily Urbanised Shanghai Metropolitan Area, China. Sustainability, 2017, 9, 1199.	3.2	28
78	Impacts of rapid urbanization on ecosystem services under different scenarios – A case study in Dianchi Lake Basin, China. Ecological Indicators, 2021, 130, 108102.	6.3	28
79	Testing reliability of short-term responses to predict longer-term responses of bryophytes and lichens to environmental change. Ecological Indicators, 2015, 58, 77-85.	6.3	27
80	Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany, 2014, 124, 81-91.	2.4	26
81	Decomposition rate and stabilization across six tundra vegetation types exposed to >20Âyears of warming. Science of the Total Environment, 2020, 724, 138304.	8.0	26
82	Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: contrasting short and medium term responses to simulated global change. PeerJ, 2014, 2, e406.	2.0	26
83	Land management to reconcile ecosystem services supply and demand mismatches—A case study in Shanghai municipality, China. Land Degradation and Development, 2020, 31, 2684-2699.	3.9	25
84	Coupling phosphate-solubilizing bacteria (PSB) with inorganic phosphorus fertilizer improves mungbean (Vigna radiata) phosphorus acquisition, nitrogen fixation, and yield in alkaline-calcareous soil. Heliyon, 2022, 8, e09081.	3.2	25
85	Relative contribution of plant traits and soil properties to the functioning of a temperate forest ecosystem in the Indian Himalayas. Catena, 2020, 194, 104671.	5.0	24
86	Impacts of land management on ecosystem service delivery in the Baiyangdian river basin. Environmental Earth Sciences, 2016, 75, 1.	2.7	23
87	Predicting litter decomposition rate for temperate forest tree species by the relative contribution of green leaf and litter traits in the Indian Himalayas region. Ecological Indicators, 2020, 119, 106827.	6.3	22
88	Bryophyte cover and richness decline after 18 years of experimental warming in alpine Sweden. AoB PLANTS, 2020, 12, plaa061.	2.3	22
89	A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. Environmental Research, 2022, 213, 113614.	7.5	22
90	Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Scientific Reports, 2016, 5, 18161.	3.3	20

#	Article	IF	CITATIONS
91	Modeling spatiotemporal variations in leaf coloring date of three tree species across China. Agricultural and Forest Meteorology, 2018, 249, 310-318.	4.8	20
92	Responses of bryophytes to simulated environmental change at Latnjajaure, northern Sweden. Journal of Bryology, 2003, 25, 163-168.	1.2	19
93	Factors Influencing Farmers' Decisions to Plant Trees on Their Farms in Uttar Pradesh, India. Small-Scale Forestry, 2015, 14, 301-313.	1.7	19
94	Hiding in the background: community-level patterns in invertebrate herbivory across the tundra biome. Polar Biology, 2019, 42, 1881-1897.	1.2	18
95	Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change. Science of the Total Environment, 2019, 671, 1086-1093.	8.0	17
96	Divergent changes of the elevational synchronicity in vegetation spring phenology in North China from 2001 to 2017 in connection with variations in chilling. International Journal of Climatology, 2021, 41, 6109-6121.	3.5	17
97	Mapping Phenological Functional Types (PhFT) in the Indian Eastern Himalayas using machine learning algorithm in Google Earth Engine. Computers and Geosciences, 2022, 158, 104982.	4.2	17
98	Vascular plant abundance and diversity in an alpine heath under observed and simulated global change. Scientific Reports, 2015, 5, 10197.	3.3	16
99	Diversity of benthic macrofauna and physical parameters of sediments in natural mangroves and in afforested mangroves three decades after compensatory planting. Aquatic Sciences, 2019, 81, 1.	1.5	16
100	Nexus between indigenous ecological knowledge and ecosystem services: a socio-ecological analysis for sustainable ecosystem management. Environmental Science and Pollution Research, 2022, 29, 61561-61578.	5.3	16
101	Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Brazilian Journal of Microbiology, 2011, 42, 1128-35.	2.0	16
102	Long-Term Impact of Transhumance Pastoralism and Associated Disturbances in High-Altitude Forests of Indian Western Himalaya. Sustainability, 2021, 13, 12497.	3.2	16
103	Assessment of leaf morphological, physiological, chemical and stoichiometry functional traits for understanding the functioning of Himalayan temperate forest ecosystem. Scientific Reports, 2021, 11, 23807.	3.3	16
104	Climate change will seriously impact bird species dwelling above the treeline: A prospective study for the Italian Alps. Science of the Total Environment, 2017, 590-591, 686-694.	8.0	15
105	Exploring the compass of potential changes induced by climate warming in plant communities. Ecological Complexity, 2017, 29, 1-9.	2.9	15
106	Chemically characterised <i>Artemisia nilagirica</i> (Clarke) Pamp. essential oil as a safe plant-based preservative and shelf-life enhancer of millets against fungal and aflatoxin contamination and lipid peroxidation. Plant Biosystems, 2020, 154, 269-276.	1.6	15
107	GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands. , 2019, , 26-47.		15
108	Pollen viability and limitation of seed production in a population of the circumpolar cushion plant, Silene acaulis (Caryophyllaceae). Nordic Journal of Botany, 2001, 21, 365-372.	0.5	14

#	Article	IF	CITATIONS
109	METHYLENE BLUE SORPTION CAPACITY OF SOME COMMON WASTE PLANT MATERIALS. Chemical Engineering Communications, 2010, 197, 1435-1444.	2.6	14
110	Resource Availability Versus Resource Extraction in Forests: Analysis of Forest Fodder System in Forest Density Classes in Lower Himalayas, India. Small-Scale Forestry, 2014, 13, 267-279.	1.7	14
111	Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study. Climate Dynamics, 2019, 52, 1413-1423.	3.8	14
112	Contribution of Cedrus deodara forests for climate mitigation along altitudinal gradient in Garhwal Himalaya, India. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	2.1	14
113	Spatial–temporal pattern of cultivated land productivity based on net primary productivity and analysis of influencing factors in the Songhua River basin. Land Degradation and Development, 2022, 33, 1917-1932.	3.9	14
114	Impacts of urbanization at city cluster scale on ecosystem services along an urban–rural gradient: a case study of Central Yunnan City Cluster, China. Environmental Science and Pollution Research, 2022, 29, 88852-88865.	5.3	14
115	Variation in responses to temperature treatments <i>ex situ</i> of the moss <i>Pleurozium schreberi</i> (Willd. <i>ex</i> Brid.) Mitt. originating from eight altitude sites in Hokkaido, Japan. Journal of Bryology, 2014, 36, 209-216.	1.2	13
116	Impacts of Urban Land Use Changes on Ecosystem Services in Dianchi Lake Basin, China. Sustainability, 2021, 13, 4813.	3.2	13
117	Vegetation responses to 26 years of warming at Latnjajaure Field Station, northern Sweden. Arctic Science, 2022, 8, 858-877.	2.3	13
118	Can bryophyte groups increase functional resolution in tundra ecosystems?. Arctic Science, 2022, 8, 609-637.	2.3	13
119	Particulate Matter Emissions From Domestic Biomass Burning in a Rural Tribal Location in the Lower Himalayas in India: Concern Over Climate Change. Small-Scale Forestry, 2012, 11, 185-192.	1.7	12
120	Braking effect of climate and topography on global change-induced upslope forest expansion. International Journal of Biometeorology, 2017, 61, 541-548.	3.0	12
121	Variations in the temperature sensitivity of spring leaf phenology from 1978 to 2014 in Mudanjiang, China. International Journal of Biometeorology, 2019, 63, 569-577.	3.0	12
122	Changes in Air Quality during the First-Level Response to the Covid-19 Pandemic in Shanghai Municipality, China. Sustainability, 2020, 12, 8887.	3.2	12
123	Community and speciesâ€specific responses to simulated global change in two subarcticâ€alpine plant communities. Ecosphere, 2015, 6, 1-18.	2.2	11
124	Temporal variations in ambient air quality indicators in Shanghai municipality, China. Scientific Reports, 2020, 10, 11350.	3.3	11
125	The role of communities in sustainable land and forest management. , 2021, , 305-318.		11
126	Diversity of arbuscular mycorrhizal fungi and its chemical drivers across dryland habitats. Mycorrhiza, 2021, 31, 685-697.	2.8	11

#	Article	IF	CITATIONS
127	Relationship Between Tree Size, Sediment Mud Content, Oxygen Levels, and Pneumatophore Abundance in the Mangrove Tree Species Avicennia Marina (Forssk.) Vierh. Journal of Marine Science and Engineering, 2021, 9, 100.	2.6	11
128	Socio-ecological vulnerability and resilience of mountain communities residing in capital-constrained environments. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 38.	2.1	11
129	Importance-performance analysis of ecosystem services in tribal communities of the Barind region, Eastern India. Ecosystem Services, 2022, 55, 101431.	5.4	11
130	Mitigation potential of important farm and forest trees: a potentiality for clean development mechanism afforestation reforestation (CDM A R) project and reducing emissions from deforestation and degradation, along with conservation and enhancement of carbon stocks (REDD+). Mitigation and Adaptation Strategies for Global Change, 2016, 21, 225-232.	2.1	10
131	Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra. Environmental Research Letters, 2021, 16, 064031.	5.2	10
132	Vegetation Characteristics Based Climate Change Vulnerability Assessment of Temperate Forests of Western Himalaya. Forests, 2022, 13, 848.	2.1	10
133	Domestic Burning of Fuelwood in a Subsistence Tribal Economy of Lower Himalayas, India: Some Implications Based on Exploratory Analysis. Small-Scale Forestry, 2012, 11, 119-130.	1.7	9
134	Effects of ambient climate and three warming treatments on fruit production in an alpine, subarctic meadow community. American Journal of Botany, 2021, 108, 411-422.	1.7	9
135	Scale dependence of species–area relationships is widespread but generally weak in Palaearctic grasslands. Journal of Vegetation Science, 2021, 32, e13044.	2.2	8
136	Climate change water vulnerability and adaptation mechanism in a Himalayan City, Nainital, India. Environmental Science and Pollution Research, 2022, 29, 85904-85921.	5.3	8
137	Distribution, pollution, and human health risks of persistent and potentially toxic elements in the sediments around Hainan Island, China. Marine Pollution Bulletin, 2022, 174, 113278.	5.0	8
138	Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra. Environmental Research Letters, 2017, 12, 025001.	5.2	7
139	Legacy effects of experimental environmental change on soil microâ€arthropod communities. Ecosphere, 2020, 11, e03030.	2.2	7
140	The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science, 2022, 8, 1026-1039.	2.3	7
141	Community perspectives on conservation of water sources in Tarkeshwar sacred groves, Himalaya, India. Water Science and Technology: Water Supply, 0, , .	2.1	7
142	Forest biomass extraction for livestock feed and associated carbon analysis in lower Himalayas, India. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 879-888.	2.1	6
143	Carbon density and accumulation in agroecosystem of Indo-Gangetic Plains and Vindhyan highlands, India. Environmental Monitoring and Assessment, 2014, 186, 4971-4985.	2.7	6
144	Assessment of climate change pattern in the Pauri Garhwal of the Western Himalayan Region: based on climate parameters and perceptions of forest-dependent communities. Environmental Monitoring and Assessment, 2020, 192, 632.	2.7	6

#	Article	IF	CITATIONS
145	Improved ecological monitoring for urban ecosystem protection in China. Ecological Indicators, 2021, 120, 106950.	6.3	6
146	Developing common protocols to measure tundra herbivory across spatial scales. Arctic Science, 2022, 8, 638-679.	2.3	6
147	Severe vegetation degradation associated with different disturbance types in a poorly managed urban recreation destination in Iran. Scientific Reports, 2021, 11, 19695.	3.3	6
148	Landsat-based multi-decadal spatio-temporal assessment of the vegetation greening and browning trend in the Eastern Indian Himalayan Region. Remote Sensing Applications: Society and Environment, 2022, 25, 100695.	1.5	6
149	Exploring nexus between ecosystem services and livelihood dependency for sustainable ecosystem management in lower Gangetic plains, Eastern India. Environmental Science and Pollution Research, 2022, 29, 63692-63708.	5.3	6
150	Resource allocation patterns in a forb and a sedge in two arctic environments—shortâ€ŧerm response to herbivory. Nordic Journal of Botany, 2002, 22, 741-747.	0.5	5
151	The Swedish system: The image cracking when taking a closer look. Geoforum, 2014, 53, 82-83.	2.5	5
152	Impacts of seven years of experimental warming and nutrient addition on neighbourhood species interactions and community structure in two contrasting alpine plant communities. Ecological Complexity, 2018, 33, 31-40.	2.9	5
153	Litter decomposition above the treeline in alpine regions: A mini review. Acta Oecologica, 2021, 113, 103775.	1.1	5
154	Closing a Gap — First Records of Bryophytes from the Qatar Peninsula. Cryptogamie, Bryologie, 2018, 39, 77-82.	0.2	5
155	Native Roadside Vegetation that Enhances Soil Erosion Control in Boreal Scandinavia. Environments - MDPI, 2014, 1, 31-41.	3.3	4
156	An Overview of the functioning of Temperate Forest Ecosystems with Particular Reference to Himalayan Temperate Forest. Trees, Forests and People, 2022, 8, 100230.	1.9	4
157	Gender lability in trioecious Silene acaulis (Caryophyllaceae). Nordic Journal of Botany, 1997, 17, 181-183.	0.5	3
158	Screening of chilli germplasm for resistance toAlternarialeaf spot disease. Archives of Phytopathology and Plant Protection, 2013, 46, 463-469.	1.3	3
159	Toads in Qatar: The species present and their probable original source. Journal of Arid Environments, 2019, 160, 91-94.	2.4	3
160	Interactions between topsoil properties and ecophysiological responses of mangroves (Avicenniamarina) along the tidal gradient in an arid region in Qatar. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2020, 44, 121-126.	2.1	3
161	Fuelwood and fodder consumption patterns among agroforestry-practicing smallholder farmers of the lower Himalayas, India. Environment, Development and Sustainability, 2022, 24, 5594-5613.	5.0	3
162	Simple Unbalanced Ranked Set Sampling for Mean Estimation of Response Variable of Developmental Programs. Journal of Modern Applied Statistical Methods, 2018, 17, .	0.2	3

#	Article	IF	CITATIONS
163	Optimal Water-Fertilizer Combinations for Efficient Nitrogen Fixation by Sugarcane at Different Stages of Growth. Water (Switzerland), 2021, 13, 2895.	2.7	3
164	Effects of Coupling Water and Fertilizer on Agronomic Traits, Sugar Content and Yield of Sugarcane in Guangxi, China. Agronomy, 2022, 12, 321.	3.0	3
165	Forest disturbance detection in Garhwal Himalayas using MODIS NDVI time-series and BFAST model. Geocarto International, 2022, 37, 12689-12708.	3.5	3
166	Diversityâ€productivity dependent resistance of an alpine plant community to different climate change scenarios. Ecological Research, 2016, 31, 935-945.	1.5	2
167	Visitors off the trail: Impacts on the dominant plant, bryophyte and lichen species in alpine heath vegetation in sub-arctic Sweden. Environmental Challenges, 2021, 3, 100050.	4.2	2
168	Cushion plants act as facilitators for soil microarthropods in high alpine Sweden. Biodiversity and Conservation, 2021, 30, 3243-3264.	2.6	2
169	Variation in specific gravity and carbon proportion of agroforestry tree species of Himalaya. Environmental Challenges, 2021, 4, 100156.	4.2	2
170	Biomass loss in village ecosystems in Western Himalaya due to wild monkey interactions: A case study. Environmental Challenges, 2021, 4, 100085.	4.2	2
171	Ecosystem service supply and demand:Theory and management application. Acta Ecologica Sinica, 2017, 37, .	0.1	2
172	Changes in plant composition and diversity in an alpine heath and meadow after 18Âyears of experimental warming. Alpine Botany, 0, , 1.	2.4	2
173	Biomass distribution and soil characteristics along the distance from the coast in a natural mangrove forest in Qatar. , 2018, , .		1
174	Review of the large branchiopod crustacean fauna of Qatar (Anostraca, Notostraca, Spinicaudata) and adjacent countries. Zoology in the Middle East, 0, , 1-8.	0.6	1
175	Impact of ambient temperature, precipitation and seven years of experimental warming and nutrient addition on fruit production in an alpine heath and meadow community. Science of the Total Environment, 2022, 836, 155450.	8.0	1
176	Social Inclusion in Swedish Public Service Television: The Representation of Gender, Ethnicity and People with Disabilities as Program Leaders for Children's Programs. Social Sciences, 2014, 3, 645-649.	1.4	0
177	The potential impact of climate change on linkages between above and below ground communities in low diversity ecosystems in extreme environments. Qscience Proceedings, 2016, , .	0.0	0
178	A new method for broadâ€scale modeling and projection of plant assemblages under climatic, biotic, and environmental cofiltering. Conservation Biology, 2021, , .	4.7	0
179	Comparing connection to theory in Bachelor's theses: Old research university versus new regional university college. QScience Connect, 2016, 2016, .	0.3	0