
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067908/publications.pdf Version: 2024-02-01

PALE DALIS

#	Article	lF	CITATIONS
1	Controls of Hair Follicle Cycling. Physiological Reviews, 2001, 81, 449-494.	28.8	1,340
2	The Biology of Hair Follicles. New England Journal of Medicine, 1999, 341, 491-497.	27.0	1,150
3	A Comprehensive Guide for the Accurate Classification of Murine Hair Follicles in Distinct Hair Cycle Stages. Journal of Investigative Dermatology, 2001, 117, 3-15.	0.7	1,129
4	The Hair Follicle as a Dynamic Miniorgan. Current Biology, 2009, 19, R132-R142.	3.9	814
5	Corticotropin Releasing Hormone and Proopiomelanocortin Involvement in the Cutaneous Response to Stress. Physiological Reviews, 2000, 80, 979-1020.	28.8	715
6	Sonic hedgehog signaling is essential for hair development. Current Biology, 1998, 8, 1058-1069.	3.9	681
7	Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature, 2010, 466, 113-117.	27.8	651
8	A Comprehensive Guide for the Recognition and Classification of Distinct Stages of Hair Follicle Morphogenesis. Journal of Investigative Dermatology, 1999, 113, 523-532.	0.7	501
9	Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation. Cell, 2017, 169, 1119-1129.e11.	28.9	477
10	Molecular principles of hair follicle induction and morphogenesis. BioEssays, 2005, 27, 247-261.	2.5	465
11	Alopecia Areata. New England Journal of Medicine, 2012, 366, 1515-1525.	27.0	456
12	Human hair follicles display a functional equivalent of the hypothalamicâ€pituitaryâ€adrenal (HPA) axis and synthesize cortisol. FASEB Journal, 2005, 19, 1332-1334.	0.5	446
13	Hair Follicle Pigmentation. Journal of Investigative Dermatology, 2005, 124, 13-21.	0.7	434
14	Neuroimmunology of Stress: Skin Takes Center Stage. Journal of Investigative Dermatology, 2006, 126, 1697-1704.	0.7	373
15	Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biology, 1999, 1, 158-164.	10.3	360
16	Frontiers in pruritus research: scratching the brain for more effective itch therapy. Journal of Clinical Investigation, 2006, 116, 1174-1185.	8.2	317
17	Reciprocal Requirements for EDA/EDAR/NF-I®B and Wnt/β-Catenin Signaling Pathways in Hair Follicle Induction. Developmental Cell, 2009, 17, 49-61.	7.0	310
18	The human hair follicle immune system: cellular composition and immune privilege. British Journal of Dermatology, 2000, 142, 862-873.	1.5	305

#	Article	lF	CITATIONS
19	Interleukin-15 protects from lethal apoptosis in vivo. Nature Medicine, 1997, 3, 1124-1128.	30.7	303
20	How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology, 2018, 159, 1992-2007.	2.8	303
21	Control of murine hair follicle regression (catagen) by TGFâ€Î²1 <i>in vivo</i> . FASEB Journal, 2000, 14, 752-760.	0.5	301
22	Graying: gerontobiology of the hair follicle pigmentary unit. Experimental Gerontology, 2001, 36, 29-54.	2.8	293
23	Neuroimmunoendocrine circuitry of the †brain-skin connection'. Trends in Immunology, 2006, 27, 32-39.	6.8	290
24	Analysis of apoptosis during hair follicle regression (catagen). American Journal of Pathology, 1997, 151, 1601-17.	3.8	284
25	A ?hairy? privilege. Trends in Immunology, 2005, 26, 32-40.	6.8	277
26	The gutâ€skin axis in health and disease: A paradigm with therapeutic implications. BioEssays, 2016, 38, 1167-1176.	2.5	264
27	In search of the "hair cycle clockâ€ŧ a guided tour. Differentiation, 2004, 72, 489-511.	1.9	263
28	Mast cells are required for normal healing of skin wounds in mice. FASEB Journal, 2006, 20, 2366-2368.	0.5	263
29	Melatonin in the skin: synthesis, metabolism and functions. Trends in Endocrinology and Metabolism, 2008, 19, 17-24.	7.1	255
30	Collapse and Restoration of MHC Class-I-Dependent Immune Privilege. American Journal of Pathology, 2004, 164, 623-634.	3.8	243
31	Differential expression of HPA axis homolog in the skin. Molecular and Cellular Endocrinology, 2007, 265-266, 143-149.	3.2	243
32	Lymphocytes, neuropeptides, and genes involved in alopecia areata. Journal of Clinical Investigation, 2007, 117, 2019-2027.	8.2	243
33	Exploring the role of stem cells in cutaneous wound healing. Experimental Dermatology, 2009, 18, 921-933.	2.9	242
34	What are melanocytes <i>really</i> doing all day long…?. Experimental Dermatology, 2009, 18, 799-819.	2.9	239
35	Telogen skin contains an inhibitor of hair growth. British Journal of Dermatology, 1990, 122, 777-784.	1.5	237
36	Maintenance of Hair Follicle Immune Privilege Is Linked to Prevention of NK Cell Attack. Journal of Investigative Dermatology, 2008, 128, 1196-1206.	0.7	229

#	Article	IF	CITATIONS
37	Pathobiology of chemotherapy-induced hair loss. Lancet Oncology, The, 2013, 14, e50-e59.	10.7	222
38	A Guide to Studying Human Hair Follicle Cycling In Vivo. Journal of Investigative Dermatology, 2016, 136, 34-44.	0.7	219
39	Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions. Journal of Investigative Dermatology, 2018, 138, 490-499.	0.7	217
40	Active Hair Growth (Anagen) is Associated with Angiogenesis. Journal of Investigative Dermatology, 2000, 114, 909-916.	0.7	215
41	Characterization of Functional Vanilloid Receptors Expressed by Mast Cells. Blood, 1998, 91, 1332-1340.	1.4	208
42	Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB Journal, 2001, 15, 2205-2214.	0.5	207
43	The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities. Trends in Pharmacological Sciences, 2009, 30, 411-420.	8.7	207
44	Melanogenesis Is Coupled to Murine Anagen: Toward New Concepts for the Role of Melanocytes and the Regulation of Melanogenesis in Hair Growth Journal of Investigative Dermatology, 1993, 101, 90S-97S.	0.7	206
45	Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution. Cell Reports, 2018, 25, 871-883.	6.4	206
46	The Hair Follicle and Immune Privilege. Journal of Investigative Dermatology Symposium Proceedings, 2003, 8, 188-194.	0.8	204
47	Senile hair graying: H ₂ O ₂ â€mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB Journal, 2009, 23, 2065-2075.	0.5	202
48	Lichen planopilaris is characterized by immune privilege collapse of the hair follicle's epithelial stem cell niche. Journal of Pathology, 2013, 231, 236-247.	4.5	201
49	Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. Journal of Clinical Investigation, 2014, 124, 3713-3724.	8.2	199
50	Stress Inhibits Hair Growth in Mice by Induction of Premature Catagen Development and Deleterious Perifollicular Inflammatory Events via Neuropeptide Substance P-Dependent Pathways. American Journal of Pathology, 2003, 162, 803-814.	3.8	196
51	Melanogenesis During the Anagen-Catagen-Telogen Transformation of the Murine Hair Cycle. Journal of Investigative Dermatology, 1994, 102, 862-869.	0.7	190
52	A Synthetic Sandalwood Odorant Induces Wound-Healing Processes in Human Keratinocytes via the Olfactory Receptor OR2AT4. Journal of Investigative Dermatology, 2014, 134, 2823-2832.	0.7	190
53	Immunophenotyping of the human bulge region: the quest to define useful <i>in situ</i> markers for human epithelial hair follicle stem cells and their niche. Experimental Dermatology, 2008, 17, 592-609.	2.9	181
54	A Hot New Twist to Hair Biology. American Journal of Pathology, 2005, 166, 985-998.	3.8	179

#	Article	IF	CITATIONS
55	Neuropeptide Control Mechanisms in Cutaneous Biology: Physiological and Clinical Significance. Journal of Investigative Dermatology, 2006, 126, 1937-1947.	0.7	179
56	The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Experimental Dermatology, 2010, 19, 89-99.	2.9	176
57	Burden of Hair Loss: Stress and the Underestimated Psychosocial Impact of Telogen Effluvium and Androgenetic Alopecia. Journal of Investigative Dermatology, 2004, 123, 455-457.	0.7	172
58	The Hair Follicle as an Estrogen Target and Source. Endocrine Reviews, 2006, 27, 677-706.	20.1	168
59	Melanogenesis is coupled to murine anagen: Toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. Journal of Investigative Dermatology, 1993, 101, S90-S97.	0.7	167
60	Hair follicle stem cells: Walking the maze. European Journal of Cell Biology, 2007, 86, 355-376.	3.6	167
61	Probing the Effects of Stress Mediators on the Human Hair Follicle. American Journal of Pathology, 2007, 171, 1872-1886.	3.8	164
62	Mast Cell Involvement in Murine Hair Growth. Developmental Biology, 1994, 163, 230-240.	2.0	158
63	Melanocytes as "Sensory" and Regulatory Cells in the Epidermis. Journal of Theoretical Biology, 1993, 164, 103-120.	1.7	156
64	The Role of the Hairless (hr) Gene in the. Regulation of Hair Follicle Catagen Transformation. American Journal of Pathology, 1999, 155, 159-171.	3.8	156
65	Human hair follicle organ culture: theory, application and perspectives. Experimental Dermatology, 2015, 24, 903-911.	2.9	154
66	NF-l̂ºB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development (Cambridge), 2006, 133, 1045-1057.	2.5	153
67	Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin. Genes and Development, 2006, 20, 571-585.	5.9	151
68	Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Experimental Dermatology, 2008, 17, 713-730.	2.9	151
69	Alkaline phosphatase activity and localization during the murine hair cycle. British Journal of Dermatology, 1994, 131, 303-310.	1.5	150
70	The Pathogenesis of Primary Cicatricial Alopecias. American Journal of Pathology, 2010, 177, 2152-2162.	3.8	150
71	The TGF-β2 Isoform Is Both a Required and Sufficient Inducer of Murine Hair Follicle Morphogenesis. Developmental Biology, 1999, 212, 278-289.	2.0	148
72	Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else?. Experimental Dermatology, 2008, 17, 139-140.	2.9	148

#	Article	IF	CITATIONS
73	Evidence that the bulge region is a site of relative immune privilege in human hair follicles. British Journal of Dermatology, 2008, 159, 1077-85.	1.5	148
74	ls there a â€~gut–brain–skin axis'?. Experimental Dermatology, 2010, 19, 401-405.	2.9	147
75	Beyond Wavy Hairs. American Journal of Pathology, 2008, 173, 14-24.	3.8	146
76	Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling. PLoS Genetics, 2009, 5, e1000573.	3.5	146
77	Mast Cell-Mediated Antigen Presentation Regulates CD8+ T Cell Effector Functions. Immunity, 2009, 31, 665-676.	14.3	145
78	Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells. PLoS Biology, 2014, 12, e1002002.	5.6	145
79	Molecular biology of hair morphogenesis: Development and cycling. The Journal of Experimental Zoology, 2003, 298B, 164-180.	1.4	144
80	Sebocytes, multifaceted epithelial cells: Lipid production and holocrine secretion. International Journal of Biochemistry and Cell Biology, 2010, 42, 181-185.	2.8	143
81	The Lysosomal Protease Cathepsin L Is an Important Regulator of Keratinocyte and Melanocyte Differentiation During Hair Follicle Morphogenesis and Cycling. American Journal of Pathology, 2002, 160, 1807-1821.	3.8	142
82	Differential Expression and Activity of Melanogenesis-Related Proteins During Induced Hair Growth in Mice. Journal of Investigative Dermatology, 1991, 96, 172-179.	0.7	141
83	Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. American Journal of Pathology, 1994, 144, 719-34.	3.8	141
84	Exploring the "Hair Growth–Wound Healing Connection― Anagen Phase Promotes Wound Re-Epithelialization. Journal of Investigative Dermatology, 2011, 131, 518-528.	0.7	137
85	What causes alopecia areata?. Experimental Dermatology, 2013, 22, 609-626.	2.9	137
86	Plasticity and Cytokinetic Dynamics of the Hair Follicle Mesenchyme: Implications for Hair Growth Control. Journal of Investigative Dermatology, 2003, 120, 895-904.	0.7	135
87	â€~Fish matters': the relevance of fish skin biology to investigative dermatology. Experimental Dermatology, 2010, 19, 313-324.	2.9	135
88	Indications for a brainâ€hair follicle axis: inhibition of keratinocyte proliferation and upâ€regulation of keratinocyte apoptosis in telogen hair follicles by stress and substance P. FASEB Journal, 2001, 15, 2536-2538.	0.5	134
89	Cutaneous Expression of CRH and CRHâ€R: Is There a "Skin Stress Response System?â€; Annals of the New York Academy of Sciences, 1999, 885, 287-311.	3.8	132
90	Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Experimental Dermatology, 2006, 15, 1-13.	2.9	131

#	Article	IF	CITATIONS
91	Generation and Cyclic Remodeling of the Hair Follicle Immune System in Mice. Journal of Investigative Dermatology, 1998, 111, 7-18.	0.7	130
92	Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling. FASEB Journal, 2000, 14, 319-332.	0.5	129
93	Human Scalp Hair Follicles Are Both a Target and a Source of Prolactin, which Serves as an Autocrine and/or Paracrine Promoter of Apoptosis-Driven Hair Follicle Regression. American Journal of Pathology, 2006, 168, 748-756.	3.8	128
94	Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin. , 1997, 386, 379-395.		127
95	A Murine Model for Inducing and Manipulating Hair Follicle Regression (Catagen): Effects of Dexamethasone and Cyclosporin A. Journal of Investigative Dermatology, 1994, 103, 143-147.	0.7	126
96	Do Hair Bulb Melanocytes Undergo Apotosis During Hair Follicle Regression (Catagen)?. Journal of Investigative Dermatology, 1998, 111, 941-947.	0.7	126
97	Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb?. Yale Journal of Biology and Medicine, 1993, 66, 541-54.	0.2	126
98	Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes <i>via</i> cannabinoid receptorâ€2â€mediated signaling. FASEB Journal, 2008, 22, 3685-3695.	0.5	125
99	Resting no more: reâ€defining telogen, the maintenance stage of the hair growth cycle. Biological Reviews, 2015, 90, 1179-1196.	10.4	125
100	Immunology of the Human Nail Apparatus: The Nail Matrix Is a Site of Relative Immune Privilege. Journal of Investigative Dermatology, 2005, 125, 1139-1148.	0.7	124
101	Thyroid Hormones Directly Alter Human Hair Follicle Functions: Anagen Prolongation and Stimulation of Both Hair Matrix Keratinocyte Proliferation and Hair Pigmentation. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4381-4388.	3.6	123
102	Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture. Experimental Dermatology, 2010, 19, 305-312.	2.9	123
103	Towards the development of a simplified long-term organ culture method for human scalp skin and its appendages under serum-free conditions. Experimental Dermatology, 2007, 16, 37-44.	2.9	122
104	A role of melatonin in neuroectodermalâ€mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors. FASEB Journal, 2005, 19, 1710-1712.	0.5	121
105	Hair follicle immune privilege and its collapse in alopecia areata. Experimental Dermatology, 2020, 29, 703-725.	2.9	120
106	Proopiomelanocortin expression in the skin during induced hair growth in mice. Experientia, 1992, 48, 50-54.	1.2	119
107	Molecular and functional aspects of the hairless (<i>hr</i>) gene in laboratory rodents and humans. Experimental Dermatology, 1998, 7, 249-267.	2.9	117
108	A simple immunofluorescence technique for simultaneous visualization of mast cells and nerve fibers reveals selectivity and hair cycle - dependent changes in mast cell - nerve fiber contacts in murine skin. Archives of Dermatological Research, 1997, 289, 292-302.	1.9	114

#	Article	IF	CITATIONS
109	Endocannabinoids limit excessive mast cell maturation and activation in human skin. Journal of Allergy and Clinical Immunology, 2012, 129, 726-738.e8.	2.9	114
110	Abnormal Interactions between Perifollicular Mast Cells and CD8+ T-Cells May Contribute to the Pathogenesis of Alopecia Areata. PLoS ONE, 2014, 9, e94260.	2.5	114
111	Transforming Growth Factor-Î ² Receptor Type I and Type II Expression During Murine Hair Follicle Development and Cycling. Journal of Investigative Dermatology, 1997, 109, 518-526.	0.7	113
112	Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. British Journal of Dermatology, 2012, 167, 1053-1066.	1.5	112
113	Antimicrobial Peptides (AMPs) from Fish Epidermis: Perspectives for Investigative Dermatology. Journal of Investigative Dermatology, 2013, 133, 1140-1149.	0.7	111
114	Human epithelial hair follicle stem cells and their progeny: Current state of knowledge, the widening gap in translational research and future challenges. BioEssays, 2014, 36, 513-525.	2.5	111
115	Melatonin and the hair follicle. Journal of Pineal Research, 2008, 44, 1-15.	7.4	110
116	Principles of Hair Cycle Control. Journal of Dermatology, 1998, 25, 793-802.	1.2	108
117	Interferon-gamma is a potent inducer of catagen-like changes in cultured human anagen hair follicles. British Journal of Dermatology, 2005, 152, 623-631.	1.5	108
118	A Guide to Assessing Damage Response Pathways of the Hair Follicle: Lessons From Cyclophosphamide-Induced Alopecia in Mice. Journal of Investigative Dermatology, 2005, 125, 42-51.	0.7	108
119	Neurogenic Inflammation in Stress-Induced Termination of Murine Hair Growth Is Promoted by Nerve Growth Factor. American Journal of Pathology, 2004, 165, 259-271.	3.8	107
120	From the Brain-Skin Connection: The Neuroendocrine-Immune Misalliance of Stress and Itch. NeuroImmunoModulation, 2006, 13, 347-356.	1.8	107
121	Runx1 Directly Promotes Proliferation of Hair Follicle Stem Cells and Epithelial Tumor Formation in Mouse Skin. Molecular and Cellular Biology, 2010, 30, 2518-2536.	2.3	107
122	Immunology of the Hair Follicle: A Short Journey into terra incognita. Journal of Investigative Dermatology Symposium Proceedings, 1999, 4, 226-234.	0.8	105
123	Vanilloid Receptor-1 (VR1) is Widely Expressed on Various Epithelial and Mesenchymal Cell Types of Human Skin. Journal of Investigative Dermatology, 2004, 123, 410-413.	0.7	105
124	Cutaneous Immunomodulation and Coordination of Skin Stress Responses by α-Melanocyte-Stimulating Hormonea. Annals of the New York Academy of Sciences, 1998, 840, 381-394.	3.8	104
125	Management of primary cicatricial alopecias: options for treatment. British Journal of Dermatology, 2008, 159, 1-22.	1.5	104
126	Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development (Cambridge), 2011, 138, 4843-4852.	2.5	104

#	Article	IF	CITATIONS
127	Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends in Molecular Medicine, 2014, 20, 559-570.	6.7	104
128	Skin as an endocrine organ: implications for its function. Drug Discovery Today Disease Mechanisms, 2008, 5, e137-e144.	0.8	103
129	IL-15 constrains mast cell–dependent antibacterial defenses by suppressing chymase activities. Nature Medicine, 2007, 13, 927-934.	30.7	102
130	Endocannabinoids Modulate Human Epidermal Keratinocyte Proliferation and Survival via the Sequential Engagement of Cannabinoid Receptor-1 and Transient Receptor Potential Vanilloid-1. Journal of Investigative Dermatology, 2011, 131, 1095-1104.	0.7	102
131	Activation of Transient Receptor Potential Vanilloid-3 Inhibits Human Hair Growth. Journal of Investigative Dermatology, 2011, 131, 1605-1614.	0.7	101
132	Dissecting the Impact of Chemotherapy on the Human Hair Follicle. American Journal of Pathology, 2007, 171, 1153-1167.	3.8	100
133	Neural Mechanisms of Hair Growth Control. Journal of Investigative Dermatology Symposium Proceedings, 1997, 2, 61-68.	0.8	99
134	The Fate of Hair Follicle Melanocytes During the Hair Growth Cycle. Journal of Investigative Dermatology Symposium Proceedings, 1999, 4, 323-332.	0.8	99
135	Migration of Melanoblasts into the Developing Murine Hair Follicle Is Accompanied by Transient c-Kit Expression. Journal of Histochemistry and Cytochemistry, 2002, 50, 751-766.	2.5	99
136	Inhibition of human hair follicle growth by endoâ€and exocannabinoids. FASEB Journal, 2007, 21, 3534-3541.	0.5	98
137	Hair Follicle Immune Privilege Revisited: The Key to Alopecia Areata Management. Journal of Investigative Dermatology Symposium Proceedings, 2018, 19, S12-S17.	0.8	97
138	Hair-Cycle-Associated Remodeling of the Peptidergic Innervation of Murine Skin, and Hair Growth Modulation by Neuropeptides. Journal of Investigative Dermatology, 2001, 116, 236-245.	0.7	96
139	How not to get scar(r)ed: pointers to the correct diagnosis in patients with suspected primary cicatricial alopecia. British Journal of Dermatology, 2009, 160, 482-501.	1.5	96
140	Immunohistological pointers to a possible role for excessive cathelicidin (LLâ€37) expression by apocrine sweat glands in the pathogenesis of hidradenitis suppurativa/acne inversa. British Journal of Dermatology, 2012, 166, 1023-1034.	1.5	96
141	Clusters of Perifollicular Macrophages in Normal Murine Skin: Physiological Degeneration of Selected Hair Follicles by Programmed Organ Deletion. Journal of Histochemistry and Cytochemistry, 1998, 46, 361-370.	2.5	95
142	Prolactin and the Skin: A Dermatological Perspective on an Ancient Pleiotropic Peptide Hormone. Journal of Investigative Dermatology, 2009, 129, 1071-1087.	0.7	95
143	A role for p75 neurotrophin receptor in the control of apoptosisâ€driven hair follicle regression. FASEB Journal, 2000, 14, 1931-1942.	0.5	94
144	Thyroid-Stimulating Hormone, a Novel, Locally Produced Modulator of Human Epidermal Functions, Is Regulated by Thyrotropin-Releasing Hormone and Thyroid Hormones. Endocrinology, 2010, 151, 1633-1642.	2.8	94

#	Article	IF	CITATIONS
145	A new role for neurotrophins: involvement of brainâ€derived neurotrophic factor and neurotrophinâ€4 in hair cycle control. FASEB Journal, 1999, 13, 395-410.	O.5	93
146	Management of alopecia areata. BMJ: British Medical Journal, 2010, 341, c3671-c3671.	2.3	93
147	Detection of proopiomelanocortin-derived antigens in normal and pathologic human skin. Translational Research, 1993, 122, 658-66.	2.3	93
148	Hair cycle-dependent expression of corticotropin-releasing factor (CRF) and CRF receptors in murine skin. FASEB Journal, 1998, 12, 287-297.	0.5	92
149	Prolactin and Its Receptor Are Expressed in Murine Hair Follicle Epithelium, Show Hair Cycle-Dependent Expression, and Induce Catagen. American Journal of Pathology, 2003, 162, 1611-1621.	3.8	91
150	Towards Dissecting the Pathogenesis of Retinoid-Induced Hair Loss: All-Trans Retinoic Acid Induces Premature Hair Follicle Regression (Catagen) by Upregulation of Transforming Growth Factor-β2 in the Dermal Papilla. Journal of Investigative Dermatology, 2005, 124, 1119-1126.	0.7	91
151	Hair Cycle-Dependent Changes in Adrenergic Skin Innervation, and Hair Growth Modulation by Adrenergic Drugs. Journal of Investigative Dermatology, 1999, 113, 878-887.	0.7	90
152	Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis. British Journal of Dermatology, 2019, 181, 677-690.	1.5	90
153	What causes hidradenitis suppurativa ?—15 years after. Experimental Dermatology, 2020, 29, 1154-1170.	2.9	90
154	TRP channels as novel players in the pathogenesis and therapy of itch. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 1004-1021.	3.8	89
155	Lichen Planopilaris and Frontal Fibrosing Alopecia as Model Epithelial Stem Cell Diseases. Trends in Molecular Medicine, 2018, 24, 435-448.	6.7	89
156	Olfactory receptor OR2AT4 regulates human hair growth. Nature Communications, 2018, 9, 3624.	12.8	89
157	Distribution and changing density of gamma-delta T cells in murine skin during the induced hair cycle. British Journal of Dermatology, 1994, 130, 281-289.	1.5	88
158	Epithelial growth control by neurotrophins: leads and lessons from the hair follicle. Progress in Brain Research, 2004, 146, 493-513.	1.4	88
159	Functional histopathology of keloid disease. Histology and Histopathology, 2015, 30, 1033-57.	0.7	88
160	Substance P stimulates murine epidermal keratinocyte proliferation and dermal mast cell degranulation in situ. Archives of Dermatological Research, 1995, 287, 500-502.	1.9	86
161	Nerve growth factor modulates keratinocyte proliferation in murine skin organ culture. British Journal of Dermatology, 1994, 130, 174-180.	1.5	85
162	Patterns of cell death: the significance of apoptosis for dermatology. Experimental Dermatology, 1993, 2, 3-10.	2.9	84

#	Article	IF	CITATIONS
163	Simple and rapid method to isolate and culture follicular papillae from human scalp hair follicles. Experimental Dermatology, 2002, 11, 381-385.	2.9	84
164	Hair Cycle Control by Estrogens: Catagen Induction via Estrogen Receptor (ER)-α Is Checked by ERβ Signaling. Endocrinology, 2005, 146, 1214-1225.	2.8	84
165	A Meeting of Two Chronobiological Systems: Circadian Proteins Period1 and BMAL1 Modulate the Human Hair Cycle Clock. Journal of Investigative Dermatology, 2014, 134, 610-619.	0.7	84
166	Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmunity Reviews, 2016, 15, 726-735.	5.8	84
167	Patterns of Proliferation and Apoptosis during Murine Hair Follicle Morphogenesis. Journal of Investigative Dermatology, 2001, 116, 947-955.	0.7	83
168	Chronobiology of the Hair Follicle: Hunting the "Hair Cycle Clock― Journal of Investigative Dermatology Symposium Proceedings, 1999, 4, 338-345.	0.8	82
169	Highâ€dose proinflammatory cytokines induce apoptosis of hair bulb keratinocytes in vivo. British Journal of Dermatology, 2000, 143, 1036-1039.	1.5	82
170	Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: annotated tables. Experimental Dermatology, 2001, 10, 369-390.	2.9	82
171	Learning from nudity: lessons from the nude phenotype. Experimental Dermatology, 2005, 14, 797-810.	2.9	82
172	What are subcutaneous adipocytesreallygood for…?. Experimental Dermatology, 2007, 16, 45-47.	2.9	82
173	Human Female Hair Follicles Are a Direct, Nonclassical Target for Thyroid-Stimulating Hormone. Journal of Investigative Dermatology, 2009, 129, 1126-1139.	0.7	82
174	Leptin and the skin: a new frontier. Experimental Dermatology, 2010, 19, 12-18.	2.9	82
175	A New Role for Neurotrophin-3. American Journal of Pathology, 1998, 153, 785-799.	3.8	81
176	Hair growth modulation by topical immunophilin ligands: induction of anagen, inhibition of massive catagen development, and relative protection from chemotherapy-induced alopecia. American Journal of Pathology, 1997, 150, 1433-41.	3.8	80
177	Merkel Cells in Mouse Skin: Intermediate Filament Pattern, Localization, and Hair Cycle-Dependent Density. Journal of Investigative Dermatology, 1996, 106, 281-286.	0.7	79
178	Towards Defining the Pathogenesis of the Hairless Phenotype. Journal of Investigative Dermatology, 1998, 110, 902-907.	0.7	79
179	The role of <scp>PPAR</scp> <i>γ</i> â€mediated signalling in skin biology and pathology: new targets and opportunities for clinical dermatology. Experimental Dermatology, 2015, 24, 245-251.	2.9	79
180	Developmental timing of hair follicle and dorsal skin innervation in mice. Journal of Comparative Neurology, 2002, 448, 28-52.	1.6	77

#	Article	IF	CITATIONS
181	Mast cell deficient and neurokinin-1 receptor knockout mice are protected from stress-induced hair growth inhibition. Journal of Molecular Medicine, 2005, 83, 386-396.	3.9	77
182	Hair follicle expression of 1,25-dihydroxyvitamin D3 receptors during the murine hair cycle. British Journal of Dermatology, 1994, 131, 477-482.	1.5	77
183	Transient Receptor Potential Vanilloid-1 Signaling as a Regulator of Human Sebocyte Biology. Journal of Investigative Dermatology, 2009, 129, 329-339.	0.7	76
184	P-Cadherin Regulates Human Hair Growth and Cycling via Canonical Wnt Signaling and Transforming Growth Factor-β2. Journal of Investigative Dermatology, 2012, 132, 2332-2341.	0.7	76
185	Hypothalamic–Pituitary–Thyroid Axis Hormones Stimulate Mitochondrial Function and Biogenesis in Human Hair Follicles. Journal of Investigative Dermatology, 2014, 134, 33-42.	0.7	76
186	The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing?. PLoS ONE, 2015, 10, e0128663.	2.5	76
187	The Peripheral Clock Regulates Human Pigmentation. Journal of Investigative Dermatology, 2015, 135, 1053-1064.	0.7	76
188	The cycling hair follicle as an ideal systems biology research model. Experimental Dermatology, 2010, 19, 707-713.	2.9	75
189	Expression of classical and non-classical MHC class I antigens in murine hair follicles. British Journal of Dermatology, 1994, 131, 177-183.	1.5	73
190	Human hair follicles are an extrarenal source and a nonhematopoietic target of erythropoietin. FASEB Journal, 2007, 21, 3346-3354.	0.5	73
191	Thyrotropin releasing hormone (TRH): a new player in human hairâ€growth control. FASEB Journal, 2010, 24, 393-403.	0.5	73
192	The Nude Mouse Skin Phenotype: The Role of Foxn1 in Hair Follicle Development and Cycling. Experimental and Molecular Pathology, 2001, 71, 171-178.	2.1	71
193	Corticotropin-Releasing Hormone Stimulates the In Situ Generation of Mast Cells from Precursors in the Human Hair Follicle Mesenchyme. Journal of Investigative Dermatology, 2010, 130, 995-1004.	0.7	71
194	Patterns of Hairless (hr) Gene Expression in Mouse Hair Follicle Morphogenesis and Cycling. American Journal of Pathology, 2000, 157, 1071-1079.	3.8	70
195	A Human Folliculoid Microsphere Assay for Exploring Epithelial– Mesenchymal Interactions in the Human Hair Follicle. Journal of Investigative Dermatology, 2009, 129, 972-983.	0.7	70
196	Seborrheic dermatitis—Looking beyond <i>Malassezia</i> . Experimental Dermatology, 2019, 28, 991-1001.	2.9	70
197	Bone Morphogenetic Protein Signaling Regulates Postnatal Hair Follicle Differentiation and Cycling. American Journal of Pathology, 2004, 165, 729-740.	3.8	69
198	Keratinocyte growth factor protects epidermis and hair follicles from cell death induced by UV irradiation, chemotherapeutic or cytotoxic agents. Journal of Cell Science, 2006, 119, 4841-4849.	2.0	69

#	Article	IF	CITATIONS
199	Targeted Skin Overexpression of the Mineralocorticoid Receptor in Mice Causes Epidermal Atrophy, Premature Skin Barrier Formation, Eye Abnormalities, and Alopecia. American Journal of Pathology, 2007, 171, 846-860.	3.8	69
200	The role of beliefs: lessons from a pilot study on illness perception, psychological distress and quality of life in patients with primary cicatricial alopecia. British Journal of Dermatology, 2015, 172, 130-137.	1.5	69
201	The Human Hair Bulb is a Source and Target of CRH. Journal of Investigative Dermatology, 2004, 122, 235-237.	0.7	68
202	Identifying novel strategies for treating human hair loss disorders: Cyclosporine A suppresses the Wnt inhibitor, SFRP1, in the dermal papilla of human scalp hair follicles. PLoS Biology, 2018, 16, e2003705.	5.6	68
203	Towards the development of a pragmatic technique for isolating and differentiating nestin-positive cells from human scalp skin into neuronal and glial cell populations: generating neurons from human skin?. Experimental Dermatology, 2006, 15, 794-800.	2.9	67
204	Two olfactory receptors— <scp>OR</scp> 2A4/7 and <scp>OR</scp> 51B5—differentially affect epidermal proliferation and differentiation. Experimental Dermatology, 2017, 26, 58-65.	2.9	67
205	Are L-tyrosine and L-dopa hormone-like bioregulators?. Journal of Theoretical Biology, 1990, 143, 123-138.	1.7	66
206	E―and P adherin expression during murine hair follicle morphogenesis and cycling. Experimental Dermatology, 1999, 8, 237-246.	2.9	66
207	Human hair follicle epithelium has an antimicrobial defence system that includes the inducible antimicrobial peptide psoriasin (S100A7) and RNase 7. British Journal of Dermatology, 2009, 161, 78-89.	1.5	65
208	Autoimmune Disease Induction in a Healthy Human Organ: A Humanized Mouse Model of Alopecia Areata. Journal of Investigative Dermatology, 2013, 133, 844-847.	0.7	65
209	Keratin 17 Gene Expression during the Murine Hair Cycle. Journal of Investigative Dermatology, 1997, 108, 324-329.	0.7	64
210	p75 Neurotrophin Receptor-Mediated Signaling Promotes Human Hair Follicle Regression (Catagen). American Journal of Pathology, 2006, 168, 221-234.	3.8	64
211	Neuronal plasticity of the "brain–skin connectionâ€! stress-triggered up-regulation of neuropeptides in dorsal root ganglia and skin via nerve growth factor-dependent pathways. Journal of Molecular Medicine, 2007, 85, 1369-1378.	3.9	64
212	Pituitary Adenylate Cyclase Activating Polypeptide. American Journal of Pathology, 2010, 177, 2563-2575.	3.8	64
213	Lichen planopilaris following hair transplantation and face-lift surgery. British Journal of Dermatology, 2012, 166, 666-370.	1.5	64
214	The biology of human hair greying. Biological Reviews, 2021, 96, 107-128.	10.4	64
215	A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO Journal, 2005, 24, 4260-4270.	7.8	63
216	The Skin POMC System (SPS): Leads and Lessons from the Hair Follicle. Annals of the New York Academy of Sciences, 1999, 885, 350-363.	3.8	63

#	Article	IF	CITATIONS
217	Prolactin—a novel neuroendocrine regulator of human keratin expression <i>in situ</i> . FASEB Journal, 2010, 24, 1768-1779.	0.5	63
218	The Role of Hair Follicle Immune Privilege Collapse in Alopecia Areata: Status and Perspectives. Journal of Investigative Dermatology Symposium Proceedings, 2013, 16, S25-S27.	0.8	63
219	Delayed Hair Follicle Morphogenesis and Hair Follicle Dystrophy in a Lipoatrophy Mouse Model of Pparg Total Deletion. Journal of Investigative Dermatology, 2018, 138, 500-510.	0.7	63
220	Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factorâ€i²2/insulinâ€ike growth factorâ€1â€mediated regulation of the hair cycle in male and female human hair follicles <i>in vitro</i> . British Journal of Dermatology, 2014, 171, 1031-1043.	1.5	62
221	Oxidative Damage Control in a Human (Mini-) Organ: Nrf2 Activation Protects against Oxidative Stress-Induced Hair Growth Inhibition. Journal of Investigative Dermatology, 2017, 137, 295-304.	0.7	62
222	Hair disorders in cancer survivors. Journal of the American Academy of Dermatology, 2019, 80, 1199-1213.	1.2	62
223	Murine skin as a target for melatonin bioregulation. Experimental Dermatology, 1994, 3, 45-50.	2.9	61
224	Mast cells as modulators of hair follicle cycling. Experimental Dermatology, 1995, 4, 266-271.	2.9	61
225	Neuroendocrine Perspectives in Alopecia Areata: Does Stress Play a Role?. Journal of Investigative Dermatology, 2009, 129, 1324-1326.	0.7	61
226	Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: An update. Journal of Dermatological Science, 2013, 69, 6-29.	1.9	61
227	Epithelial Growth by Rat Vibrissae Follicles In Vitro Requires Mesenchymal Contact via Native Extracellular Matrix. Journal of Investigative Dermatology, 1990, 95, 202-207.	0.7	60
228	Immune Privilege and the Skin. , 2008, 10, 27-52.		60
229	Receptor activator of NF-κB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5342-5347.	7.1	60
230	Hair disorders in patients with cancer. Journal of the American Academy of Dermatology, 2019, 80, 1179-1196.	1.2	60
231	Zinc as an ambivalent but potent modulator of murine hair growth in vivo- preliminary observations. Experimental Dermatology, 2005, 14, 844-853.	2.9	59
232	Control of Human Hair Growth by Neurotrophins: Brain-Derived Neurotrophic Factor Inhibits Hair Shaft Elongation, Induces Catagen, and Stimulates Follicular Transforming Growth Factor β2 Expression. Journal of Investigative Dermatology, 2005, 124, 675-685.	0.7	59
233	A practical guide for the study of human and murine sebaceous glands <i>in situ</i> . Experimental Dermatology, 2013, 22, 631-637.	2.9	59
234	Mitochondrial Function in Murine Skin Epithelium Is Crucial for Hair Follicle Morphogenesis and Epithelial–Mesenchymal Interactions. Journal of Investigative Dermatology, 2015, 135, 679-689.	0.7	59

#	Article	IF	CITATIONS
235	A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes <i>in vitro</i> and <i>in situ</i> . PeerJ, 2013, 1, e40.	2.0	59
236	A neuroendocrinological perspective on human hair follicle pigmentation. Pigment Cell and Melanoma Research, 2011, 24, 89-106.	3.3	58
237	Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nature Communications, 2017, 8, 14694.	12.8	58
238	Epithelial-to-Mesenchymal Stem Cell Transition in a Human Organ: Lessons from Lichen Planopilaris. Journal of Investigative Dermatology, 2018, 138, 511-519.	0.7	58
239	Exploring the human hair follicle microbiome*. British Journal of Dermatology, 2021, 184, 802-815.	1.5	58
240	Spermidine Promotes Human Hair Growth and Is a Novel Modulator of Human Epithelial Stem Cell Functions. PLoS ONE, 2011, 6, e22564.	2.5	58
241	Distinct Patterns of NCAM Expression Are Associated with Defined Stages of Murine Hair Follicle Morphogenesis and Regression. Journal of Histochemistry and Cytochemistry, 1998, 46, 1401-1409.	2.5	57
242	Nestin in Human Skin: Exclusive Expression in Intramesenchymal Skin Compartments and Regulation by Leptin. Journal of Investigative Dermatology, 2009, 129, 2711-2720.	0.7	57
243	Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions. British Journal of Dermatology, 2004, 151, 753-765.	1.5	56
244	Profiling the Response of Human Hair Follicles to Ultraviolet Radiation. Journal of Investigative Dermatology, 2009, 129, 1790-1804.	0.7	56
245	Basic fibroblast growth factor: A potential new therapeutic tool for the treatment of hypertrophic and keloid scars. Annals of Anatomy, 2009, 191, 33-44.	1.9	56
246	JAK inhibitors and alopecia areata. Lancet, The, 2019, 393, 318-319.	13.7	56
247	From frog integument to human skin: dermatological perspectives from frog skin biology. Biological Reviews, 2014, 89, 618-655.	10.4	55
248	Bi-allelic Mutations in LSS, Encoding Lanosterol Synthase, Cause Autosomal-Recessive Hypotrichosis Simplex. American Journal of Human Genetics, 2018, 103, 777-785.	6.2	55
249	Pharmacological Disruption of Hair Follicle Pigmentation by Cyclophosphamide as a Model for Studying the Melanocyte Response to and Recovery from Cytotoxic Drug Damage In Situ. Journal of Investigative Dermatology, 1996, 106, 1203-1211.	0.7	54
250	Topical Estrogen Accelerates Hair Regrowth in Mice After Chemotherapy-Induced Alopecia by Favoring the Dystrophic Catagen Response Pathway to Damage. Journal of Investigative Dermatology, 2004, 122, 7-13.	0.7	54
251	Who is really in control of skin immunity underphysiologicalcircumstances - lymphocytes, dendritic cells or keratinocytes?. Experimental Dermatology, 2006, 15, 913-916.	2.9	54
252	Cylindroma as Tumor of Hair Follicle Origin. Journal of Investigative Dermatology, 2006, 126, 1182-1184.	0.7	54

#	Article	IF	CITATIONS
253	MHC Class I Expression in Murine Skin: Developmentally Controlled and Strikingly Restricted Intraepithelial Expression During Hair Follicle Morphogenesis and Cycling, and Response to Cytokine Treatment In Vivo. Journal of Investigative Dermatology, 1998, 111, 25-30.	0.7	53
254	Endocrine controls of keratin expression. BioEssays, 2009, 31, 389-399.	2.5	53
255	LHX2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development (Cambridge), 2016, 143, 1512-22.	2.5	53
256	Deciphering the molecular morphology of the human hair cycle: Wnt signalling during the telogen–anagen transformation. British Journal of Dermatology, 2020, 182, 1184-1193.	1.5	53
257	Topical calcitriol enhances normal hair regrowth but does not prevent chemotherapy-induced alopecia in mice. Cancer Research, 1996, 56, 4438-43.	0.9	53
258	Control of Hair Growth with Parathyroid Hormone (7–34). Journal of Investigative Dermatology, 1997, 108, 928-932.	0.7	52
259	Prolactin: an emerging force along the cutaneous–endocrine axis. Trends in Endocrinology and Metabolism, 2010, 21, 569-577.	7.1	52
260	Frontiers in alopecia areata pathobiology research. Journal of Allergy and Clinical Immunology, 2019, 144, 1478-1489.	2.9	52
261	Reduction of Intrafollicular Apoptosis in Chemotherapy-Induced Alopecia by Topical Calcitriol-Analogs. Journal of Investigative Dermatology, 1998, 111, 598-604.	0.7	51
262	A New Strategy for Modulating Chemotherapy-Induced Alopecia, Using PTH/PTHrP Receptor Agonist and Antagonist. Journal of Investigative Dermatology, 2001, 117, 173-178.	0.7	51
263	Exploring the "Thyroid–Skin Connectionâ€: Concepts, Questions, and Clinical Relevance. Journal of Investigative Dermatology, 2010, 130, 7-10.	0.7	51
264	The Mitochondrial Electron Transport Chain Is Dispensable for Proliferation and Differentiation of Epidermal Progenitor Cells. Stem Cells, 2011, 29, 1459-1468.	3.2	51
265	Thyrotropin-Releasing Hormone Selectively Stimulates Human Hair Follicle Pigmentation. Journal of Investigative Dermatology, 2011, 131, 2368-2377.	0.7	51
266	Longâ€ŧerm organ culture of keloid disease tissue. Experimental Dermatology, 2012, 21, 376-381.	2.9	51
267	New Roles for Glial Cell Line-Derived Neurotrophic Factor and Neurturin. American Journal of Pathology, 2000, 156, 1041-1053.	3.8	50
268	Kit Is Expressed by Epithelial Cells In Vivo. Journal of Investigative Dermatology, 2003, 121, 976-984.	0.7	50
269	Stress-Induced Neurogenic Inflammation in Murine Skin Skews Dendritic Cells Towards Maturation and Migration. American Journal of Pathology, 2008, 173, 1379-1388.	3.8	50
270	Cannabinoid receptor 1 controls human mucosal-type mast cell degranulation and maturation in situ. Journal of Allergy and Clinical Immunology, 2013, 132, 182-193.e8.	2.9	50

#	Article	IF	CITATIONS
271	The PDE4 inhibitor, apremilast, suppresses experimentally induced alopecia areata in human skin in vivo. Journal of Dermatological Science, 2015, 77, 74-76.	1.9	50
272	Overexpression of Bcl-2 Protects from Ultraviolet B-Induced Apoptosis but Promotes Hair Follicle Regression and Chemotherapy-Induced Alopecia. American Journal of Pathology, 2000, 156, 1395-1405.	3.8	49
273	Ex vivo evaluation of antifibrotic compounds in skin scarring: EGCG and silencing of PAI-1 independently inhibit growth and induce keloid shrinkage. Laboratory Investigation, 2013, 93, 946-960.	3.7	49
274	Hair cycle-dependent production of ACTH in mouse skin. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1448, 147-152.	4.1	48
275	What controls hair follicle cycling?. Experimental Dermatology, 1999, 8, 229-236.	2.9	48
276	Neuroendocrinology and neurobiology of sebaceous glands. Biological Reviews, 2020, 95, 592-624.	10.4	48
277	Therapeutic strategies for treating hair loss. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 101-110.	0.5	47
278	Hunting the genes in maleâ€pattern alopecia: how important are they, how close are we and what will they tell us?. Experimental Dermatology, 2016, 25, 251-257.	2.9	47
279	How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Experimental Dermatology, 2019, 28, 413-418.	2.9	47
280	Estrogens and Human Scalp Hair Growth—Still More Questions than Answers. Journal of Investigative Dermatology, 2004, 122, 840-842.	0.7	46
281	The mineralocorticoid receptor as a novel player in skin biology: beyond the renal horizon?. Experimental Dermatology, 2010, 19, 100-107.	2.9	46
282	Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin. PLoS ONE, 2013, 8, e73596.	2.5	46
283	Assessment of Quality of Life and Treatment Outcomes of Patients With Persistent Postchemotherapy Alopecia. JAMA Dermatology, 2019, 155, 724.	4.1	46
284	Hair growth inhibition by heparin in mice: a model system for studying the modulation of epithelial cell growth by glycosaminoglycans?. British Journal of Dermatology, 1991, 124, 415-422.	1.5	45
285	2,4,6â€Octatrienoic acid is a novel promoter of melanogenesis and antioxidant defence in normal human melanocytes via PPARâ€Î³ activation. Pigment Cell and Melanoma Research, 2011, 24, 618-630.	3.3	45
286	CDK4/6 inhibition mitigates stem cell damage in a novel model for taxaneâ€induced alopecia. EMBO Molecular Medicine, 2019, 11, e11031.	6.9	45
287	Autophagy is essential for maintaining the growth of a human (mini-)organ: Evidence from scalp hair follicle organ culture. PLoS Biology, 2018, 16, e2002864.	5.6	44
288	Hair cycle-dependent changes in the gene expression and protein content of transforming factor β1 and β3 in murine skin. Archives of Dermatological Research, 1997, 289, 554-557.	1.9	43

#	Article	IF	CITATIONS
289	Intact hair follicle innervation is not essential for anagen induction and development. Archives of Dermatological Research, 1998, 290, 574-578.	1.9	43
290	Keloid Disease Can Be Inhibited by Antagonizing Excessive mTOR Signaling With a Novel Dual TORC1/2 Inhibitor. American Journal of Pathology, 2012, 181, 1642-1658.	3.8	43
291	Thyrotropin-Releasing Hormone Controls Mitochondrial Biology in Human Epidermis. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 978-986.	3.6	43
292	Site-specific gene expression profiling as a novel strategy for unravelling keloid disease pathobiology. PLoS ONE, 2017, 12, e0172955.	2.5	43
293	Does prolactin play a role in skin biology and pathology?. Medical Hypotheses, 1991, 36, 33-42.	1.5	42
294	(Neuro-)endocrinology of epithelial hair follicle stem cells. Molecular and Cellular Endocrinology, 2008, 288, 38-51.	3.2	42
295	Hair Cycle Control by Vanilloid Receptor-1 (TRPV1): Evidence from TRPV1 Knockout Mice. Journal of Investigative Dermatology, 2006, 126, 1909-1912.	0.7	41
296	Endocrine controls of primary adult human stem cell biology: Thyroid hormones stimulate keratin 15 expression, apoptosis, and differentiation in human hair follicle epithelial stem cells in situ and in vitro. European Journal of Cell Biology, 2010, 89, 769-777.	3.6	41
297	Calcitonin geneâ€related peptide (CGRP) may award relative protection from interferonâ€Î³â€induced collapse of human hair follicle immune privilege. Experimental Dermatology, 2012, 21, 223-226.	2.9	41
298	A primer for studying cell cycle dynamics of the human hair follicle. Experimental Dermatology, 2016, 25, 663-668.	2.9	41
299	Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re-epithelialization. Stem Cells, 2016, 34, 1377-1385.	3.2	41
300	Hair Follicle Apoptosis and Bcl-2. Journal of Investigative Dermatology Symposium Proceedings, 1999, 4, 272-277.	0.8	40
301	The â€~follicular trochanter': an epithelial compartment of the human hair follicle bulge region in need of further characterization. British Journal of Dermatology, 2007, 157, 1013-1016.	1.5	40
302	Nonviral in Situ Green Fluorescent Protein Labeling and Culture of Primary, Adult Human Hair Follicle Epithelial Progenitor Cells. Stem Cells, 2009, 27, 2793-2803.	3.2	40
303	Mind the (Gender) Gap: Does Prolactin Exert Gender and/or Site-Specific Effects on the Human Hair Follicle?. Journal of Investigative Dermatology, 2010, 130, 886-891.	0.7	40
304	Deciphering the functions of the hair follicle infundibulum in skin physiology and disease. Cell and Tissue Research, 2014, 358, 697-704.	2.9	40
305	Frontal fibrosing alopecia shows robust T helper 1 and Janus kinase 3 skewing. British Journal of Dermatology, 2020, 183, 1083-1093.	1.5	40
306	Analysis of Hair Follicles in Mutant Laboratory Mice. Journal of Investigative Dermatology Symposium Proceedings, 2005, 10, 264-270.	0.8	39

#	Article	IF	CITATIONS
307	Hair Cycle-Dependent Changes in Skin Immune Functions: Anagen-Associated Depression of Sensitization for Contact Hypersensitivity in Mice. Journal of Investigative Dermatology, 1996, 106, 598-604.	0.7	38
308	Thyrotropin powers human mitochondria. FASEB Journal, 2010, 24, 1525-1531.	0.5	38
309	Mutant laboratory mice with abnormalities in pigmentation: annotated tables. Journal of Dermatological Science, 2002, 28, 1-33.	1.9	37
310	Scarring Alopecia and the PPAR-Î ³ Connection. Journal of Investigative Dermatology, 2009, 129, 1066-1070.	0.7	37
311	Thyrotropin-releasing hormone and oestrogen differentially regulate prolactin and prolactin receptor expression in female human skin and hair follicles <i>in vitro</i> . British Journal of Dermatology, 2010, 162, 1127-1131.	1.5	37
312	Eccrine sweat glands associate with the human hair follicle within a defined compartment of dermal white adipose tissue. British Journal of Dermatology, 2018, 178, 1163-1172.	1.5	37
313	Skin-derived human adult stem cells surprisingly share many features with human pancreatic stem cells. European Journal of Cell Biology, 2008, 87, 39-46.	3.6	36
314	p53â€dependent transcriptional regulation of EDA2R and its involvement in chemotherapyâ€induced hair loss. FEBS Letters, 2010, 584, 2473-2477.	2.8	36
315	Characterization of an <i>in vivo</i> model for the study of eyelash biology and trichomegaly: mouse eyelash morphology, development, growth cycle, and anagen prolongation by bimatoprost. British Journal of Dermatology, 2010, 162, 1186-1197.	1.5	36
316	N-WASP is a novel regulator of hair-follicle cycling that controls antiproliferative TGFÎ ² pathways. Journal of Cell Science, 2010, 123, 128-140.	2.0	36
317	The bulge is the source of cellular renewal in the sebaceous gland of mouse skin. Archives of Dermatological Research, 2000, 292, 573-576.	1.9	35
318	Betacellulin Regulates Hair Follicle Development and Hair Cycle Induction and Enhances Angiogenesis in Wounded Skin. Journal of Investigative Dermatology, 2008, 128, 1256-1265.	0.7	35
319	Functional role of \hat{l}^21 integrin-mediated signalling in the human hair follicle. Experimental Cell Research, 2008, 314, 498-508.	2.6	35
320	Systemic Decreases in Cutaneous Innervation after Burn Injury. Journal of Investigative Dermatology, 2010, 130, 1948-1951.	0.7	35
321	Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. Journal of Investigative Dermatology, 2021, 141, 1633-1645.e13.	0.7	35
322	The induction of anagen hair growth in telogen mouse skin by cyclosporine A administration. Laboratory Investigation, 1989, 60, 365-9.	3.7	35
323	Substantial Sex-Dependent Differences in the Response of Human Scalp Hair Follicles to Estrogen Stimulation In Vitro Advocate Gender-Tailored Management of Female Versus Male Pattern Balding. Journal of Investigative Dermatology Symposium Proceedings, 2005, 10, 243-246.	0.8	34
324	Phenotypic indications that human sweat glands are a rich source of nestin-positive stem cell populations. British Journal of Dermatology, 2010, 162, 380-383.	1.5	34

#	Article	IF	CITATIONS
325	A prototypic mathematical model of the human hair cycle. Journal of Theoretical Biology, 2012, 310, 143-159.	1.7	34
326	Biology of the eyelash hair follicle: an enigma in plain sight. British Journal of Dermatology, 2016, 174, 741-752.	1.5	34
327	Mapping the expression of epithelial hair follicle stem cellâ€related transcription factors <scp>LHX</scp> 2 and <scp>SOX</scp> 9 in the human hair follicle. Experimental Dermatology, 2015, 24, 462-467.	2.9	33
328	Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse. British Journal of Dermatology, 2016, 175, 531-541.	1.5	33
329	Oxidative stress management in the hair follicle: Could targeting NRF2 counter ageâ€related hair disorders and beyond?. BioEssays, 2017, 39, 1700029.	2.5	33
330	Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends in Molecular Medicine, 2021, 27, 60-74.	6.7	33
331	Does collapse of immune privilege in the hair-follicle bulge play a role in the pathogenesis of primary cicatricial alopecia?. Clinical and Experimental Dermatology, 2010, 35, 637-644.	1.3	32
332	Transepidermal <scp>UV</scp> radiation of scalp skin <i>exÂvivo</i> induces hair follicle damage that is alleviated by the topical treatment with caffeine. International Journal of Cosmetic Science, 2019, 41, 164-182.	2.6	32
333	Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis. PLoS Genetics, 2016, 12, e1006369.	3.5	32
334	Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer. Experimental Dermatology, 2004, 13, 635-642.	2.9	31
335	Developmentally Regulated Expression of αâ€MSH and MCâ€1 Receptor in C57BL/6 Mouse Skin Suggests Functions Beyond Pigmentation ^a . Annals of the New York Academy of Sciences, 1999, 885, 433-439.	3.8	31
336	Fetal origin of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2010, 125, 273-275.e4.	2.9	31
337	Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. European Journal of Cell Biology, 2017, 96, 632-641.	3.6	31
338	The Epidermal Pentapeptide pyroGlu-Glu-Asp-Ser-GlyOH Inhibits Murine Hair Growth in vivo and in vitro. Dermatology, 1991, 183, 173-178.	2.1	30
339	Differential distribution of haematopoietic and nonhaematopoietic progenitor cells in intralesional and extralesional keloid: do keloid scars provide a niche for nonhaematopoietic mesenchymal stem cells?. British Journal of Dermatology, 2010, 162, 1377-1383.	1.5	30
340	Re-Evaluating Cyclosporine A as a Hair Growth–Promoting Agent in Human Scalp Hair Follicles. Journal of Investigative Dermatology, 2015, 135, 2129-2132.	0.7	30
341	Towards a consensus on how to diagnose and quantify female pattern hair loss – The â€~Female Pattern Hair Loss Severity Index (<scp>FPHL</scp> â€ <scp>SI</scp>)'. Journal of the European Academy of Dermatology and Venereology, 2016, 30, 667-676.	2.4	30
342	Mouse models of atopic dermatitis: a critical reappraisal. Experimental Dermatology, 2021, 30, 319-336.	2.9	30

#	Article	IF	CITATIONS
343	Hair growth control by immunosuppression. Archives of Dermatological Research, 1996, 288, 408-410.	1.9	29
344	Polyamines and hair: a couple in search of perfection. Experimental Dermatology, 2010, 19, 784-790.	2.9	29
345	Topobiology of Human Pigmentation: P-Cadherin Selectively Stimulates Hair Follicle Melanogenesis. Journal of Investigative Dermatology, 2013, 133, 1591-1600.	0.7	29
346	Toward high-throughput chip calorimetry by use of segmented-flow technology. Thermochimica Acta, 2015, 603, 172-183.	2.7	29
347	Sebaceous lipids are essential for water repulsion, protection against UVB-induced apoptosis, and ocular integrity in mice. Development (Cambridge), 2016, 143, 1823-31.	2.5	29
348	Innate lymphoid cells 3 induce psoriasis in xenotransplanted healthy human skin. Journal of Allergy and Clinical Immunology, 2018, 142, 305-308.e6.	2.9	29
349	The renaissance of human skin organ culture: A critical reappraisal. Differentiation, 2018, 104, 22-35.	1.9	29
350	Pterins in Human Hair Follicle Cells and in the Synchronized Murine Hair Cycle. Journal of Investigative Dermatology, 1998, 111, 545-550.	0.7	28
351	Intercellular Adhesion Molecule-1 and Hair Follicle Regression. Journal of Histochemistry and Cytochemistry, 2000, 48, 557-568.	2.5	28
352	Exploring the "brain-skin connection― Leads and lessons from the hair follicle. Current Research in Translational Medicine, 2016, 64, 207-214.	1.8	28
353	Human Perifollicular Macrophages Undergo Apoptosis, Express Wnt Ligands, and Switch their Polarization during Catagen. Journal of Investigative Dermatology, 2019, 139, 2543-2546.e9.	0.7	28
354	Quantitative mapping of human hair greying and reversal in relation to life stress. ELife, 2021, 10, .	6.0	28
355	Loss of γδT Cells Results in Hair Cycling Defects. Journal of Investigative Dermatology, 2013, 133, 1666-1669.	0.7	27
356	Blocking Potassium Channels (Kv1.3): A New Treatment Option for Alopecia Areata?. Journal of Investigative Dermatology, 2013, 133, 2088-2091.	0.7	27
357	Advanced Inhibition of Undesired Human Hair Growth by PPARÎ ³ Modulation?. Journal of Investigative Dermatology, 2014, 134, 1128-1131.	0.7	27
358	Testing Chemotherapeutic Agents in the Feather Follicle Identifies a Selective Blockade of Cell Proliferation and a Key Role for Sonic Hedgehog Signaling in Chemotherapy-Induced Tissue Damage. Journal of Investigative Dermatology, 2015, 135, 690-700.	0.7	27
359	IL-15-IgG2b fusion protein accelerates and enhances a Th2 but not a Th1 immune responsein vivo, while IL-2-IgG2b fusion protein inhibits both. European Journal of Immunology, 1998, 28, 3312-3320.	2.9	26
360	Distinct mechanisms underlie pattern formation in the skin and skin appendages. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 280-291.	3.6	26

#	Article	IF	CITATIONS
361	<scp>L</scp> â€Carnitine– <scp>L</scp> â€tartrate promotes human hair growth <i>in vitro</i> . Experimental Dermatology, 2007, 16, 936-945.	2.9	26
362	The α-melanocyte stimulating hormone-related tripeptide K(D)PT stimulates human hair follicle pigmentation <i>in situ</i> under proinflammatory conditions. British Journal of Dermatology, 2009, 160, 433-437.	1.5	26
363	Cutaneous consequences of inhibiting EGF receptor signaling in vivo: Normal hair follicle development, but retarded hair cycle induction and inhibition of adipocyte growth in EgfrWa5 mice. Journal of Dermatological Science, 2010, 57, 155-161.	1.9	26
364	Neural controls of human hair growth: Calcitonin gene-related peptide (CGRP) induces catagen. Journal of Dermatological Science, 2012, 67, 153-155.	1.9	26
365	Thyroxine Differentially Modulates the Peripheral Clock: Lessons from the Human Hair Follicle. PLoS ONE, 2015, 10, e0121878.	2.5	26
366	Differential expression and functionality of ATP-binding cassette transporters in the human hair follicle. British Journal of Dermatology, 2015, 172, 1562-1572.	1.5	26
367	Thyroid Hormones Enhance Mitochondrial Function in Human Epidermis. Journal of Investigative Dermatology, 2016, 136, 2003-2012.	0.7	26
368	iNKT cells ameliorate human autoimmunity: Lessons from alopecia areata. Journal of Autoimmunity, 2018, 91, 61-72.	6.5	26
369	Do human dermal adipocytes switch from lipogenesis in anagen to lipophagy and lipolysis during catagen in the human hair cycle?. Experimental Dermatology, 2019, 28, 432-435.	2.9	26
370	PPARâ€Î³ signalling as a key mediator of human hair follicle physiology and pathology. Experimental Dermatology, 2020, 29, 312-321.	2.9	26
371	The psoriatic epidermal lesion and anagen hair growth may share the same "switch-on" mechanism. Yale Journal of Biology and Medicine, 1988, 61, 467-76.	0.2	26
372	Hair growth induction by substance P. Laboratory Investigation, 1994, 71, 134-40.	3.7	26
373	FGF5 and the murine hair cycle. Archives of Dermatological Research, 1996, 288, 264-266.	1.9	25
374	What is the biological basis of pattern formation of skin lesions?. Experimental Dermatology, 2006, 15, 547-549.	2.9	25
375	Hair loss as a result of cutaneous autoimmunity: Frontiers in the immunopathogenesis of primary cicatricial alopecia. Autoimmunity Reviews, 2009, 8, 478-483.	5.8	25
376	An unexpected twist in alopecia areata pathogenesis: are NK cells protective and CD49b+ T cells pathogenic?. Experimental Dermatology, 2010, 19, e347-9.	2.9	25
377	A novel in vitro assay for electrophysiological research on human skin fibroblasts: Degenerate electrical waves downregulate collagen I expression in keloid fibroblasts. Experimental Dermatology, 2011, 20, 64-68.	2.9	25
378	Modulation of basophil activity: AÂnovel function of the neuropeptide α-melanocyte–stimulating hormone. Journal of Allergy and Clinical Immunology, 2012, 129, 1085-1093.	2.9	25

#	Article	IF	CITATIONS
379	Harnessing neuroendocrine controls of keratin expression: A new therapeutic strategy for skin diseases?. BioEssays, 2014, 36, 672-686.	2.5	25
380	α-Melanocyte-stimulating hormone: a protective peptide against chemotherapy-induced hair follicle damage?. British Journal of Dermatology, 2014, 170, 956-960.	1.5	25
381	Overexpression of Epigen during Embryonic Development Induces Reversible, Epidermal Growth Factor Receptor-Dependent Sebaceous Gland Hyperplasia. Molecular and Cellular Biology, 2014, 34, 3086-3095.	2.3	25
382	Hair growth control by innate immunocytes: Perifollicular macrophages revisited. Experimental Dermatology, 2019, 28, 425-431.	2.9	25
383	Tumour Necrosis Factor Alpha, Interferon Gamma and Substance P Are Novel Modulators of Extrapituitary Prolactin Expression in Human Skin. PLoS ONE, 2013, 8, e60819.	2.5	25
384	The alchemy of immune privilege explored from a neuroimmunological perspective. Current Opinion in Pharmacology, 2008, 8, 480-489.	3.5	24
385	Primary cicatricial alopecias: a U.K. survey. British Journal of Dermatology, 2012, 167, 694-697.	1.5	24
386	Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?. Trends in Pharmacological Sciences, 2013, 34, 599-604.	8.7	24
387	Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. Journal of Pineal Research, 2022, 72, .	7.4	24
388	Hair cycle-dependent changes in mast cell histochemistry in murine skin. Archives of Dermatological Research, 1995, 287, 683-686.	1.9	23
389	Exploring the role of prolactin in psoriasis. Archives of Dermatological Research, 2012, 304, 115-118.	1.9	23
390	A New Humanized Mouse Model for Alopecia Areata. Journal of Investigative Dermatology Symposium Proceedings, 2013, 16, S37-S38.	0.8	23
391	Divergent proliferation patterns of distinct human hair follicle epithelial progenitor niches in situ and their differential responsiveness to prostaglandin D2. Scientific Reports, 2017, 7, 15197.	3.3	23
392	NF-κB Participates in Mouse Hair Cycle Control and Plays Distinct Roles in the Various Pelage Hair Follicle Types. Journal of Investigative Dermatology, 2018, 138, 256-264.	0.7	23
393	Pro-inflammatory Vδ1+T-cells infiltrates are present in and around the hair bulbs of non-lesional and lesional alopecia areata hair follicles. Journal of Dermatological Science, 2020, 100, 129-138.	1.9	23
394	Vascular endothelial growth factorâ€A as a promising therapeutic target for the management of psoriasis. Experimental Dermatology, 2020, 29, 687-698.	2.9	23
395	Who is really in control of skin immunity underphysiologicalcircumstances - lymphocytes, dendritic cells or keratinocytes?. Experimental Dermatology, 2006, 15, 913-929.	2.9	23
396	Expression of the human Cathepsin L inhibitor hurpin in mice: skin alterations and increased carcinogenesis. Experimental Dermatology, 2007, 16, 715-723.	2.9	22

#	Article	IF	CITATIONS
397	Characterization of stem cells in Dupuytren's disease. British Journal of Surgery, 2010, 98, 308-315.	0.3	22
398	Migrating melanocyte stem cells: masters of disaster?. Nature Medicine, 2013, 19, 818-819.	30.7	22
399	The Ciliopathy Gene Rpgrip1l Is Essential for Hair Follicle Development. Journal of Investigative Dermatology, 2015, 135, 701-709.	0.7	22
400	Enhanced Neurogenic Biomarker Expression and Reinnervation in HumanÂAcute Skin Wounds Treated by Electrical Stimulation. Journal of Investigative Dermatology, 2017, 137, 737-747.	0.7	22
401	Profiling the human hair follicle immune system in lichen planopilaris and frontal fibrosing alopecia: can macrophage polarization differentiate these two conditions microscopically?. British Journal of Dermatology, 2020, 183, 537-547.	1.5	22
402	Resident human dermal γÎT-cells operate as stress-sentinels: Lessons from the hair follicle. Journal of Autoimmunity, 2021, 124, 102711.	6.5	22
403	What is the biological basis of pattern formation of skin lesions?. Experimental Dermatology, 2006, 15, 547-564.	2.9	21
404	The M4 muscarinic acetylcholine receptor plays a key role in the control of murine hair follicle cycling and pigmentation. Life Sciences, 2007, 80, 2248-2252.	4.3	21
405	Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal. Archives of Dermatological Research, 2018, 310, 453-462.	1.9	21
406	Activated skin mast cells are involved in murine hair follicle regression (catagen). Laboratory Investigation, 1997, 77, 319-32.	3.7	21
407	Identification of Telogen Markers Underscores that Telogen Is Far from a Quiescent Hair Cycle Phase. Journal of Investigative Dermatology, 2012, 132, 721-724.	0.7	20
408	The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease. Journal of Investigative Dermatology, 2016, 136, 1500-1512.	0.7	20
409	p53 Is a Direct Transcriptional Repressor ofÂKeratin 17: Lessons from a Rat Model ofÂRadiation Dermatitis. Journal of Investigative Dermatology, 2016, 136, 680-689.	0.7	20
410	E-Cadherin–Mediated Cell Contact Controls the Epidermal Damage Response in Radiation Dermatitis. Journal of Investigative Dermatology, 2017, 137, 1731-1739.	0.7	20
411	A guide to studying human dermal adipocytes in situ. Experimental Dermatology, 2018, 27, 589-602.	2.9	20
412	TRPV4 Is Expressed in Human Hair Follicles and Inhibits Hair Growth InÂVitro. Journal of Investigative Dermatology, 2019, 139, 1385-1388.	0.7	20
413	Hair cycle-dependent expression of heat shock proteins in hair follicle epithelium. International Journal of Dermatology, 1997, 36, 587-592.	1.0	19
414	The Anagen Hair Cycle Induces Systemic Immunosuppression of Contact Hypersensitivity in Mice. Cellular Immunology, 1998, 184, 65-73.	3.0	19

#	Article	IF	CITATIONS
415	Premature termination of hair follicle morphogenesis and accelerated hair follicle cycling in Iasi congenital atrichia (fzica) mice points to fuzzy as a key element of hair cycle control. Experimental Dermatology, 2005, 14, 561-570.	2.9	19
416	Frontiers in the (Neuro-)endocrine Controls of Hair Growth. Journal of Investigative Dermatology Symposium Proceedings, 2007, 12, 20-22.	0.8	19
417	Can the Hair Follicle Become a Model for Studying Selected Aspects of Human Ocular Immune Privilege?. , 2011, 52, 4447.		19
418	Dopamine is a novel, direct inducer of catagen in human scalp hair follicles <i>in vitro</i> . British Journal of Dermatology, 2013, 168, 520-525.	1.5	19
419	Schwann cells as underestimated, major players in human skin physiology and pathology. Experimental Dermatology, 2020, 29, 93-101.	2.9	19
420	Thieme Clinical Companions Dermatology. , 2006, , .		19
421	β1 Integrin Signaling Maintains Human Epithelial Progenitor Cell Survival In Situ and Controls Proliferation, Apoptosis and Migration of Their Progeny. PLoS ONE, 2013, 8, e84356.	2.5	19
422	A novel personalized treatment approach for psoriasis: antiâ€vascular endothelial growth factorâ€A (VEGFâ€A) therapy. British Journal of Dermatology, 2022, 186, 782-791.	1.5	19
423	Laminin-511, inducer of hair growth, is down-regulated and its suppressor in hair growth, laminin-332 up-regulated in chemotherapy-induced alopecia. Journal of Dermatological Science, 2010, 58, 43-54.	1.9	18
424	The neuropeptide galanin is a novel inhibitor of human hair growth. British Journal of Dermatology, 2012, 167, 10-16.	1.5	18
425	The Thyroid Hormone Analogue KB2115 (Eprotirome) Prolongs Human Hair Growth (Anagen) ExÂVivo. Journal of Investigative Dermatology, 2016, 136, 1711-1714.	0.7	18
426	Is the eccrine gland an integral, functionally important component of the human scalp pilosebaceous unit?. Experimental Dermatology, 2016, 25, 149-150.	2.9	18
427	Itching for an answer: A review of potential mechanisms of scalp itch in psoriasis. Experimental Dermatology, 2019, 28, 1397-1404.	2.9	18
428	The Phytocannabinoid (–)-Cannabidiol Operates as aÂComplex, Differential Modulator of Human Hair Growth: Anti-Inflammatory Submicromolar versus Hair Growth Inhibitory Micromolar Effects. Journal of Investigative Dermatology, 2020, 140, 484-488.e5.	0.7	18
429	Peroxisome proliferator-activated receptor-γ signalling protects hair follicle stem cells from chemotherapy-induced apoptosis and epithelial–mesenchymal transition. British Journal of Dermatology, 2022, 186, 129-141.	1.5	18
430	Selective Expression of Calcium-Binding Proteins S100A8 and S100A9 at Distinct Sites of Hair Follicles. Journal of Investigative Dermatology, 2001, 117, 748-750.	0.7	17
431	Modulation of Chemotherapy-Induced Human Hair Follicle Damage by 17-β Estradiol and Prednisolone: Potential Stimulators of Normal Hair Regrowth by "Dystrophic Catagen―Promotion?. Journal of Investigative Dermatology, 2009, 129, 506-509.	0.7	17
432	Protein Kinase C Isoforms Have Differential Roles in the Regulation of Human Sebocyte Biology. Journal of Investigative Dermatology, 2012, 132, 1988-1997.	0.7	17

#	Article	IF	CITATIONS
433	The immune system of mouse vibrissae follicles: cellular composition and indications of immune privilege. Experimental Dermatology, 2013, 22, 593-598.	2.9	17
434	<scp>RBM</scp> 28, a protein deficient in <scp>ANE</scp> syndrome, regulates hair follicle growth via miR‣03 and p63. Experimental Dermatology, 2015, 24, 618-622.	2.9	17
435	Prolactin as a candidate sebotrop(h)ic hormone?. Experimental Dermatology, 2018, 27, 729-736.	2.9	17
436	New effects of caffeine on corticotropinâ€releasing hormone (CRH)â€induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRHâ€R1/2, IP ₃ â€R, ACTH, in <i>exÂvivo</i> human male androgenetic scalp hair follicles. British Journal of Dermatology, 2021,) Tj ETQq0 1.5	0 0 rgBT /Ove 17
437	184, 96-110. Biophysical monitoring of melanogenesis as a tool for pigment and hair research. Archives of Dermatological Research, 1995, 287, 687-690.	1.9	16
438	Lhx2—decisive role in epithelial stem cell maintenance, or just the "tip of the iceberg�. BioEssays, 2006, 28, 1157-1160.	2.5	16
439	Upregulation of Toll-Like Receptors (TLRs) 6, 7, and 8 in Keloid Scars. Journal of Investigative Dermatology, 2011, 131, 2128-2130.	0.7	16
440	Cover Image: Neuroendocrine treatment of inherited keratin disorders by cannabinoids?. British Journal of Dermatology, 2018, 178, 1469-1469.	1.5	16
441	Pathobiology questions raised by telogen effluvium and trichodynia in COVIDâ€19 patients. Experimental Dermatology, 2021, 30, 999-1000.	2.9	16
442	A simple assay for the study of human hair follicle damage induced by ionizing irradiation. Experimental Dermatology, 2010, 19, e306-9.	2.9	15
443	Female pattern hair loss: beyond an androgenic aetiology?. British Journal of Dermatology, 2010, 163, 1140-1141.	1.5	15
444	Cartilage oligomeric matrix protein (COMP) forms part of the connective tissue of normal human hair follicles. Experimental Dermatology, 2011, 20, 361-366.	2.9	15
445	The role of P-cadherin in skin biology and skin pathology: lessons from the hair follicle. Cell and Tissue Research, 2015, 360, 761-771.	2.9	15
446	Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS ONE, 2019, 14, e0212659.	2.5	15
447	Theophylline exerts complex antiâ€ageing and antiâ€cytotoxicity effects in human skin <i>ex vivo</i> . International Journal of Cosmetic Science, 2020, 42, 79-88.	2.6	15
448	Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo. PLoS ONE, 2020, 15, e0227817.	2.5	15
449	Inflammatory Mediator TAK1 Regulates Hair Follicle Morphogenesis and Anagen Induction Shown by Using Keratinocyte-Specific TAK1-Deficient Mice. PLoS ONE, 2010, 5, e11275.	2.5	15
450	Immunomodulatory effects of the α-melanocyte-stimulating hormone-related tripeptide K(D)PT on human scalp hair follicles under proinflammatory conditions. British Journal of Dermatology, 2009, 161, 1400-1403.	1.5	14

#	Article	IF	CITATIONS
451	An improved, standardised protocol for the isolation, enrichment and targeted neural differentiation of Nestin+ progenitors from adult human dermis. Experimental Dermatology, 2010, 19, 549-555.	2.9	14
452	Point scanning confocal microscopy facilitates 3D human hair follicle imaging in tissue sections. Experimental Dermatology, 2010, 19, 691-694.	2.9	14
453	Visualization and characterisation of defined hair follicle compartments by Fourier transform infrared (FTIR) imaging without labelling. Journal of Dermatological Science, 2011, 63, 191-198.	1.9	14
454	Topically Applied Nicotinamide Inhibits Human Hair Follicle Growth ExÂVivo. Journal of Investigative Dermatology, 2018, 138, 1420-1422.	0.7	14
455	Mechanisms of epithelial thickening due to IL-1 signalling blockade and TNF- $\hat{l}\pm$ administration differ during wound repair and regeneration. Differentiation, 2018, 99, 10-20.	1.9	14
456	Nuclear factor (erythroid-derived 2)-like-2 pathway modulates substance P–induced human mast cell activation and degranulation in the hair follicle. Journal of Allergy and Clinical Immunology, 2018, 142, 1331-1333.e8.	2.9	14
457	Nonâ€neuronal kappaâ€opioid receptor activation enhances epidermal keratinocyte proliferation, and modulates mast cell functions in human skin <i>ex vivo</i> . Journal of Dermatology, 2020, 47, 917-921.	1.2	14
458	Topical odorant application of the specific olfactory receptor OR2AT4 agonist, Sandalore ® , improves telogen effluviumâ€associated parameters. Journal of Cosmetic Dermatology, 2021, 20, 784-791.	1.6	14
459	Inhibition of Shh Signaling through MAPK Activation Controls Chemotherapy-Induced Alopecia. Journal of Investigative Dermatology, 2021, 141, 334-344.	0.7	14
460	Human organ rejuvenation by VEGF-A: Lessons from the skin. Science Advances, 2022, 8, .	10.3	14
461	Birth, life, and death of the MAGE3 hypothesis of alopecia areata pathobiology. Journal of Dermatological Science, 2013, 72, 327-330.	1.9	13
462	N1-methylspermidine, a stable spermidine analog, prolongs anagen and regulates epithelial stem cell functions in human hair follicles. Archives of Dermatological Research, 2015, 307, 841-847.	1.9	13
463	Toward the Clonotype Analysis of Alopecia Areata-Specific, Intralesional Human CD8+ T Lymphocytes. Journal of Investigative Dermatology Symposium Proceedings, 2015, 17, 9-12.	0.8	13
464	Identification of a Potential Molecular Diagnostic Biomarker in Keloid Disease: Syndecan-1 (CD138) Is Overexpressed inÂKeloid Scar Tissue. Journal of Investigative Dermatology, 2016, 136, 2319-2323.	0.7	13
465	Peroxisome Proliferator–Activated Receptor-γâ~'Mediated Signaling Regulates Mitochondrial Energy Metabolism in Human Hair Follicle Epithelium. Journal of Investigative Dermatology, 2018, 138, 1656-1659.	0.7	13
466	Human epithelial stem cell survival within their niche requires "tonic―cannabinoid receptor 1â€signalling—Lessons from the hair follicle. Experimental Dermatology, 2021, 30, 479-493.	2.9	13
467	Telomere Dynamics and Telomerase in the Biology of Hair Follicles and their Stem Cells as a Model for Aging Research. Journal of Investigative Dermatology, 2021, 141, 1031-1040.	0.7	13
468	Human hair follicles operate an internal Cori cycle and modulate their growth via glycogen phosphorylase. Scientific Reports, 2021, 11, 20761.	3.3	13

#	Article	IF	CITATIONS
469	Growth Hormone and the Human Hair Follicle. International Journal of Molecular Sciences, 2021, 22, 13205.	4.1	13
470	Inhibition of Chemotherapy-Induced Keratinocyte Apoptosis In Vivo by an Interleukin-15-IgG Fusion Protein. Journal of Investigative Dermatology, 1998, 110, 457-458.	0.7	12
471	Expression and functional relevance of melatonin receptors in hair follicle biology. Experimental Dermatology, 2005, 14, 157-157.	2.9	12
472	Male New Zealand Black/KN mice: a novel model for autoimmune-induced permanent alopecia?. British Journal of Dermatology, 2006, 155, 437-445.	1.5	12
473	Erythropoietin and the skin: a role for epidermal oxygen sensing?. BioEssays, 2009, 31, 344-348.	2.5	12
474	Utilizing the hair follicle to dissect the regulation and autocrine/paracrine activities of prolactin in humans. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1311-E1312.	3.5	12
475	NF-κB Activity Is Required for Anagen Maintenance in Human Hair Follicles In Vitro. Journal of Investigative Dermatology, 2014, 134, 2036-2038.	0.7	12
476	Protection of glucotoxicity by a tripeptide derivative of αâ€melanocyteâ€stimulating hormone in human epidermal keratinocytes. British Journal of Dermatology, 2019, 180, 836-848.	1.5	12
477	An osteopontinâ€derived peptide inhibits human hair growth at least in part by decreasing fibroblast growth factorâ€7 production in outer root sheath keratinocytes. British Journal of Dermatology, 2020, 182, 1404-1414.	1.5	12
478	Preclinical evidence that the <scp>PPAR</scp> γ modulator, <i>N</i> â€Acetylâ€ <scp>GED</scp> â€0507â€34â€ may protect human hair follicle epithelial stem cells against lichen planopilarisâ€associated damage. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e195-e197.	Levo, 2.4	12
479	Fluoxetine promotes human hair follicle pigmentation <i>exÂvivo</i> : serotonin reuptake inhibition as a new antigreying strategy?. British Journal of Dermatology, 2020, 182, 1492-1494.	1.5	12
480	Clues that mitochondria are involved in the hair cycle clock: MPZL3 regulates entry into and progression of murine hair follicle cycling. Experimental Dermatology, 2020, 29, 1243-1249.	2.9	12
481	Mitochondrial energy metabolism is negatively regulated by cannabinoid receptor 1 in intact human epidermis. Experimental Dermatology, 2020, 29, 616-622.	2.9	12
482	Gelatin sponge-supported histoculture of human nasal mucosa. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 215-220.	1.5	11
483	Expression of an Olfactomedin-Related Gene in Rat Hair Follicular Papilla Cells. Journal of Investigative Dermatology, 2005, 125, 24-33.	0.7	11
484	TSH is a novel neuroendocrine regulator of selected keratins in the human hair follicle. Journal of Dermatological Science, 2011, 64, 67-70.	1.9	11
485	A function for Rac1 in the terminal differentiation and pigmentation of hair. Journal of Cell Science, 2012, 125, 896-905.	2.0	11
486	Is thyrotropin-releasing hormone a novel neuroendocrine modulator of keratin expression in human skin?. British Journal of Dermatology, 2013, 169, 146-151.	1.5	11

#	Article	IF	CITATIONS
487	<scp>SIRT</scp> 2 as a new player in epigenetic programming of keratinocyte differentiation and a candidate tumor suppressor. Experimental Dermatology, 2014, 23, 636-638.	2.9	11
488	Re-investigating the Basement Membrane Zone of Psoriatic Epidermal Lesions: Is Laminin-511 a New Player in Psoriasis Pathogenesis?. Journal of Histochemistry and Cytochemistry, 2018, 66, 847-862.	2.5	11
489	Distinct Patterns of Hair Graft Survival After Transplantation Into 2 Nonhealing Ulcers: Is Location Everything?. Dermatologic Surgery, 2019, 45, 557-565.	0.8	11
490	Topical Lâ€ŧhyroxine: The Cinderella among hormones waiting to dance on the floor of dermatological therapy?. Experimental Dermatology, 2020, 29, 910-923.	2.9	11
491	Toward Predicting the Spatio-Temporal Dynamics of Alopecia Areata Lesions Using Partial Differential Equation Analysis. Bulletin of Mathematical Biology, 2020, 82, 34.	1.9	11
492	Elements of the interleukin-1 signaling system show hair cycle-dependent gene expression in murine skin. European Journal of Dermatology, 1998, 8, 475-7.	0.6	11
493	ACTH Production in C57BL/6 Mouse Skin. Annals of the New York Academy of Sciences, 1999, 885, 448-450.	3.8	10
494	Nestin+ progenitor cells isolated from adult human sweat gland stroma promote reepithelialisation and mayÂstimulate angiogenesis in wounded human skin ex vivo. Archives of Dermatological Research, 2019, 311, 325-330.	1.9	10
495	The Evolving Pathogenesis of Alopecia Areata: Major Open Questions. Journal of Investigative Dermatology Symposium Proceedings, 2020, 20, S6-S10.	0.8	10
496	Hypothesis: possible role for the melatonin receptor in vitiligo: discussion paper. Journal of the Royal Society of Medicine, 1989, 82, 539-41.	2.0	10
497	Sequential expression of glutathione-S-transferase isoenzymes during hair growth phases in mice and their relationship to caldesmon, phosphotyrosinase and VIP receptor protein. Histology and Histopathology, 1995, 10, 39-45.	0.7	10
498	The â€~melanocyte-keratin' mystery revisited: neither normal human epidermal nor hair follicle melanocytes express keratin 16 or keratin 6in situ. British Journal of Dermatology, 2009, 161, 933-938.	1.5	9
499	Cover Image: Are melanocyte-associated peptides the elusive autoantigens in alopecia areata?. British Journal of Dermatology, 2017, 176, 1106-1106.	1.5	9
500	A technique for more precise distinction between catagen and telogen human hair follicles exÂvivo. Journal of the American Academy of Dermatology, 2018, 79, 558-559.	1.2	9
501	Retinoic acid co-treatment aggravates severity of dioxin-induced skin lesions in hairless mice via induction of inflammatory response. Biochemical and Biophysical Research Communications, 2018, 506, 854-861.	2.1	9
502	Fluorescent cell tracer dye permits realâ€time assessment of reâ€epithelialization in a serumâ€free ex vivo human skin wound assay. Wound Repair and Regeneration, 2019, 27, 126-133.	3.0	9
503	Does dysfunctional autophagy contribute to immune privilege collapse and alopecia areata pathogenesis?. Journal of Dermatological Science, 2020, 100, 75-78.	1.9	9
504	Vascular Endothelial Growth Factor Blockade Induces Dermal Endothelial Cell Apoptosis in a Clinically Relevant Skin Organ Culture Model. Skin Pharmacology and Physiology, 2020, 33, 170-177.	2.5	9

#	Article	IF	CITATIONS
505	Do hair follicles operate as primitive, multifocal kidneyâ€like excretory (miniâ€) organs?. Experimental Dermatology, 2020, 29, 357-365.	2.9	9
506	The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Frontiers in Neuroendocrinology, 2022, 66, 101008.	5.2	9
507	Recurrent episodes of hair loss in a 37 year old woman. BMJ, The, 2012, 345, e6798-e6798.	6.0	8
508	T-cell "induced-self―MHC class I/peptide complexes may enable "de novo―tolerance induction to neo-antigens occurring outside of the thymus. Experimental Dermatology, 2017, 26, 529-531.	2.9	8
509	Y-27632 preserves epidermal integrity in a human skin organ-culture (hSOC) system by regulating AKT and ERK signaling pathways. Journal of Dermatological Science, 2019, 96, 99-109.	1.9	8
510	Fibrosis and stem cell epithelial-mesenchymal transition in primary cicatricial alopecias. Journal of the American Academy of Dermatology, 2019, 80, e165-e166.	1.2	8
511	Growth Hormone Operates as a Neuroendocrine Regulator of Human Hair Growth ExÂVivo. Journal of Investigative Dermatology, 2019, 139, 1593-1596.	0.7	8
512	Thyroxine restores severely impaired cutaneous re-epithelialisation and angiogenesis in a novel preclinical assay for studying human skin wound healing under "pathological―conditions ex vivo. Archives of Dermatological Research, 2021, 313, 181-192.	1.9	8
513	A novel nondrug SFRP1 antagonist inhibits catagen development in human hair follicles <i>ex vivo</i> . British Journal of Dermatology, 2021, 184, 371-373.	1.5	8
514	Frontiers in Lichen Planopilaris and Frontal Fibrosing Alopecia Research: Pathobiology Progress and Translational Horizons. JID Innovations, 2022, 2, 100113.	2.4	8
515	Targeting mitochondria in dermatological therapy: beyond oxidative damage and skin aging. Expert Opinion on Therapeutic Targets, 2022, 26, 233-259.	3.4	8
516	The human hair follicle has established a fully functional peripheral equivalent of the hypothamalic-pituitary-adrenal-axis (HPA). Experimental Dermatology, 2005, 14, 158-158.	2.9	7
517	HaCaT keratinocytes express functional receptors for thyroid-stimulating hormone. Journal of Dermatological Science, 2010, 59, 52-55.	1.9	7
518	Thymic Peptides Differentially Modulate Human Hair Follicle Growth. Journal of Investigative Dermatology, 2012, 132, 1516-1519.	0.7	7
519	Analysing the dynamics of a model for alopecia areata as an autoimmune disorder of hair follicle cycling. Mathematical Medicine and Biology, 2018, 35, 387-407.	1.2	7
520	Visualization of global RNA synthesis in a human (mini-) organ in situ by click chemistry. BioTechniques, 2018, 65, 97-100.	1.8	7
521	Hair(y) Matters in Melanoma Biology. Trends in Molecular Medicine, 2020, 26, 441-449.	6.7	7
522	UDP-GlcNAc-1-Phosphotransferase Is a Clinically Important Regulator of Human and Mouse Hair Pigmentation. Journal of Investigative Dermatology, 2021, 141, 2957-2965.e5.	0.7	7

#	Article	IF	CITATIONS
523	Sensory Reinnervation of Human Skin by Human Neural Stem Cell‒Derived Peripheral Neurons ExÂVivo. Journal of Investigative Dermatology, 2022, 142, 257-261.e5.	0.7	7
524	Hair growth control by immunosuppression. Archives of Dermatological Research, 1996, 288, 408-410.	1.9	7
525	Mathematical model for alopecia areata. Journal of Theoretical Biology, 2015, 380, 332-345.	1.7	6
526	ls prolactin a negative neuroendocrine regulator of human skin re-epithelisation after wounding?. Archives of Dermatological Research, 2018, 310, 833-841.	1.9	6
527	Compartmentalised metabolic programmes in human anagen hair follicles: New targets to modulate epithelial stem cell behaviour, keratinocyte proliferation and hair follicle immune status?. Experimental Dermatology, 2021, 30, 645-651.	2.9	6
528	Stress and Nasal Allergy: Corticotropin-Releasing Hormone Stimulates Mast Cell Degranulation and Proliferation in Human Nasal Mucosa. International Journal of Molecular Sciences, 2021, 22, 2773.	4.1	6
529	Beyond the NFAT Horizon: From Cyclosporine A-Induced Adverse Skin Effects to Novel Therapeutics. Trends in Pharmacological Sciences, 2021, 42, 316-328.	8.7	6
530	Hair Follicle Chemosensation: TRPM5 Signaling Is Required for Anagen Maintenance. Journal of Investigative Dermatology, 2021, 141, 2300-2303.	0.7	6
531	The hair follicleâ€psoriasis axis: Shared regulatory mechanisms and therapeutic targets. Experimental Dermatology, 2022, 31, 266-279.	2.9	6
532	Mitochondrially localized MPZL3 emerges as a signaling hub of mammalian physiology. BioEssays, 2021, 43, 2100126.	2.5	6
533	T-oligos as differential modulators of human scalp hair growth and pigmentation: a new "time lapse system―for studying human skin and hair follicle biology in vitro?. Archives of Dermatological Research, 2008, 300, 155-159.	1.9	5
534	An efficient method for eccrine gland isolation from human scalp. Experimental Dermatology, 2018, 27, 678-681.	2.9	5
535	Apremilast and tofacitinib exert differential effects in the humanized mouse model of alopecia areata. British Journal of Dermatology, 2020, 182, 227-229.	1.5	5
536	Mouse Models of Alopecia Areata: C3H/HeJ Mice Versus the Humanized AA Mouse Model. Journal of Investigative Dermatology Symposium Proceedings, 2020, 20, S11-S15.	0.8	5
537	Does mitochondrial dysfunction of hair follicle epithelial stem cells play a role in the pathobiology of lichen planopilaris?. British Journal of Dermatology, 2020, 183, 964-966.	1.5	5
538	A Cell Membrane-Level Approach to Cicatricial Alopecia Management: Is Caveolin-1 a Viable Therapeutic Target in Frontal Fibrosing Alopecia?. Biomedicines, 2021, 9, 572.	3.2	5
539	Does erythropoietin modulate human hair follicle melanocyte activities <i>in situ</i> ?. Experimental Dermatology, 2010, 19, 65-67.	2.9	4
540	Image Gallery: Intravital visualization of the dynamic changes in human hair follicle cycling. British Journal of Dermatology, 2018, 178, e396-e396.	1.5	4

#	Article	IF	CITATIONS
541	The Hair Follicle as an Interdisciplinary Model for Biomedical Research: An Eclectic Literature Synthesis. BioEssays, 2020, 42, 2000053.	2.5	4
542	Towards developing an organotypic model for the preclinical study and manipulation of human hair matrix-dermal papilla interactions. Archives of Dermatological Research, 2022, 314, 491-497.	1.9	4
543	Evidence from a humanized mouse model of androgenetic alopecia that plateletâ€rich plasma stimulates hair regrowth, hair shaft diameter and vellusâ€ŧoâ€ŧerminal hair reconversion <i>inÂvivo</i> . British Journal of Dermatology, 2021, 185, 644-646.	1.5	4
544	The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biological Reviews, 2021, 96, 2573-2583.	10.4	4
545	<i>Hydra</i> and the hair follicle – An unconventional comparative biology approach to exploring the human holobiont. BioEssays, 2022, 44, e2100233.	2.5	4
546	Wound healing protects against chemotherapy-induced alopecia in young rats via up-regulating interleukin-11²-mediated signaling. Heliyon, 2017, 3, e00309.	3.2	3
547	516 Possible role of ILC1 in the pathogenesis of alopecia areata (AA). Journal of Investigative Dermatology, 2019, 139, S88.	0.7	3
548	Adenosine Promotes Human Hair Growth and Inhibits Catagen Transition InÂVitro: Role of the Outer Root Sheath Keratinocytes. Journal of Investigative Dermatology, 2020, 140, 1085-1088.e6.	0.7	3
549	Reâ€innervation of human skin by rat dorsal root ganglia permits to study interactions between sensory nerve fibres and native human dermal mast cells ex vivo. Experimental Dermatology, 2021, 30, 418-420.	2.9	3
550	Data assimilation of synthetic data as a novel strategy for predicting disease progression in alopecia areata. Mathematical Medicine and Biology, 2021, 38, 314-332.	1.2	3
551	The Polyamine Regulator AMD1 Upregulates Spermine Levels to Drive Epidermal Differentiation. Journal of Investigative Dermatology, 2021, 141, 2178-2188.e6.	0.7	3
552	A folliculocentric perspective of dandruff pathogenesis: Could a troublesome condition be caused by changes to a natural secretory mechanism?. BioEssays, 2021, 43, e2100005.	2.5	3
553	Effect of minoxidil formulations on human scalp skin xenotransplants on SCID mice: A novel preâ€clinical in vivo assay for androgenetic alopecia research. Experimental Dermatology, 2022, 31, 980-982.	2.9	3
554	A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO Journal, 2011, 30, 627-627.	7.8	2
555	664 Vasoactive intestinal peptide (VIP) regulates human melanocyte biology and hair follicle pigmentation. Journal of Investigative Dermatology, 2016, 136, S117.	0.7	2
556	Mineralocorticoid Receptor Antagonists Stimulate Human Hair Growth ex vivo. Skin Pharmacology and Physiology, 2019, 32, 344-348.	2.5	2
557	Inhibition of ATP binding cassette transporter B1 sensitizes human hair follicles to chemotherapy-induced damage. Journal of Dermatological Science, 2019, 95, 44-47.	1.9	2
558	Towards a renaissance of dermatoendocrinology: Selected current frontiers. Experimental Dermatology, 2020, 29, 786-789.	2.9	2

#	Article	IF	CITATIONS
559	Shining a (blue) light on hair follicle chronobiology and photobiomodulation. Experimental Dermatology, 2021, 30, 189-192.	2.9	2
560	Adiponectin negatively regulates pigmentation, Wnt/β-catenin and HGF/c-Met signalling within human scalp hair follicles ex vivo. Archives of Dermatological Research, 2021, , 1.	1.9	2
561	Mitochondrially Localized MPZL3 Functions as a Negative Regulator of Sebaceous Gland Size and Sebocyte Proliferation. Journal of Investigative Dermatology, 2022, 142, 2524-2527.e7.	0.7	2
562	Hair cycleâ€dependent expression of corticotropinâ€releasing factor (CRF) and CRF receptors in murine skin. FASEB Journal, 1998, 12, 287-297.	0.5	1
563	Open questions in hidradenitis suppurativa research: a hair biologist's perspective. Experimental Dermatology, 2008, 15, 478-478.	2.9	1
564	A simple culture method for epithelial stem cells derived from human hair follicle. Open Life Sciences, 2013, 8, 432-439.	1.4	1
565	An Innovative Approach to Dissecting Keloid Disease Leading to Identification of the Retinoic Acid Pathway as a Potential Therapeutic Target. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e601.	0.6	1
566	Image Gallery: Optical coherence tomography for intravital human hair follicle analyses exÂvivo. British Journal of Dermatology, 2019, 180, e141.	1.5	1
567	Investigating human eyelash hair follicle growth <i>in situ</i> and <i>ex vivo</i> : a pilot study. British Journal of Dermatology, 2021, 184, 553-555.	1.5	1
568	HAIR SCIENCE MINI-SERIES: Neuroendocrinology of the Human Hair Follicle Episode 3: A "Hairy― Excursion into the Hypothalamic-Pituitary-Thyroid Axis. International Society of Hair Restoration Surgery, 2021, 31, 93-100.	0.1	1
569	HAIR SCIENCE MINI-SERIES: Neuroendocrinology of the Human Hair Follicle Episode 2: Scalp Hair Follicles and the Hypothalamic-Pituitary-Adrenal Axis. International Society of Hair Restoration Surgery, 2020, 30, 222-227.	0.1	1
570	Dupuytren's Disease Shows Populations of Hematopoietic and Mesenchymal Stem-Like Cells Involving Perinodular Fat and Skin in Addition to Diseased Fascia: Implications for Pathogenesis and Therapy. , 2012, , 167-174.		1
571	In search of the source of hyperprolactinaemia in systemic lupus erythematosus. Clinical and Experimental Rheumatology, 2011, 29, 1060.	0.8	1
572	New frontiers in human hair follicle (neuro-)endocrinology. Experimental Dermatology, 2008, 15, 643-648.	2.9	0
573	â€~Neurotrophology' of the hair follicle: neurotrophins act as auto- and paracrine growth factors and immunomodulators. Experimental Dermatology, 2008, 15, 643-648.	2.9	0
574	â€~Perspectives in dermato-endocrinology': (neuro-)endocrinology of epithelial hair follicle stem cells: Charting terra incognita. Experimental Dermatology, 2008, 17, 630-630.	2.9	0
575	17-beta estradiol and prednisolone as potential stimulators of hair re-growth in chemotherapy-induced human hair follicle damage via â€~dystrophic catagen' promotion?. Experimental Dermatology, 2008, 17, 630-631.	2.9	0
576	Towards new aspects of melatonin research in dermato-endocrinology. Experimental Dermatology, 2008, 17, 625-625.	2.9	0

#	Article	IF	CITATIONS
577	Corticotropin releasing hormone (CRH), melanocortins (MC) and thyrotropin releasing hormone (TRH) stimulate pigmentation and melanocyte function in the human hair follicle. Experimental Dermatology, 2008, 17, 628-628.	2.9	0
578	Cutaneous neuroimmunology - lessons from the hair follicle. Experimental Dermatology, 2008, 13, 569-569.	2.9	0
579	Neurogenic skin inflammation in stress-triggered inhibition of hair growth in mice is promoted via nerve growth factor-dependent pathways. Experimental Dermatology, 2008, 13, 581-581.	2.9	0
580	A â€~hot' new twist to hair biology - involvement of vanilloid receptor-1 signaling in human hair growth control. Experimental Dermatology, 2008, 13, 581-581.	2.9	0
581	The murine hair follicle is a melatonin target. Experimental Dermatology, 2008, 13, 583-583.	2.9	0
582	Induction of neuropeptides in skin innervating sensory neurons by stress and nerve growth factor as a possible reason for hair growth alteration. Experimental Dermatology, 2008, 13, 583-583.	2.9	0
583	Keratin 16 expression in epidermal melanocytes: reply from authors. British Journal of Dermatology, 2010, 162, 218-219.	1.5	0
584	Natural killer cell/epithelial interactions. , 2010, , 289-296.		0
585	Label-Free Non-Destructive Identification of Stem Cells in the Hair Follicle with Confocal Raman Spectrocopy. , 2010, , .		0
586	Corrigendum to "Laminin-511, inducer of hair growth, is down-regulated and its suppressor in hair growth, laminin-332 up-regulated in chemotherapy-induced alopecia― Journal of Dermatological Science, 2010, 60, 58.	1.9	0
587	Signaling through P2X7 receptor in human T cells involves p56 , MAP kinases, and transcription factors AP-1 and NF-κB Journal of Biological Chemistry, 2011, 286, 9894.	3.4	0
588	Expression of Concern. Experimental Dermatology, 2012, 21, 240-240.	2.9	0
589	Launch of the new letter category: â€~Mouse Mutants with Absent/Minimal Skin Phenotype'. Experimental Dermatology, 2014, 23, 691-691.	2.9	0
590	Neuroendocrine Controls of Keratin Expression in Human Skin. , 2018, , .		0
591	Healthy Hair (Anatomy, Biology, Morphogenesis, Cycling, and Function). , 2019, , 1-22.		0
592	Getting ready for the next decade of <i>Experimental Dermatology</i> . Experimental Dermatology, 2019, 28, 1199-1200.	2.9	0
593	A function for Rac1 in the terminal differentiation and pigmentation of hair. Development (Cambridge), 2012, 139, e907-e907.	2.5	0
594	Hair Science Mini-Series. International Society of Hair Restoration Surgery, 2020, 30, 184-190.	0.1	0

#	Article	IF	CITATIONS
595	Hormonal regulation of human hair follicle epithelial stem cell functions in situ and in vitro. Journal of Stem Cells and Regenerative Medicine, 2010, 6, 69.	2.2	0
596	Title is missing!. , 2020, 15, e0227817.		0
597	Title is missing!. , 2020, 15, e0227817.		0
598	Title is missing!. , 2020, 15, e0227817.		0
599	Title is missing!. , 2020, 15, e0227817.		0