Kamel Guesmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067862/publications.pdf

Version: 2024-02-01

1306789 1199166 26 178 7 12 citations g-index h-index papers 28 28 28 165 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Systematic design approach of fuzzy PID stabilizer for DC–DC converters. Energy Conversion and Management, 2008, 49, 2880-2889.	4.4	34
2	Control of nonlinear phenomena in DC–DC converters: Fuzzy logic approach. International Journal of Circuit Theory and Applications, 2008, 36, 857-874.	1.3	29
3	Adaptive fuzzy synergetic control for nonlinear hysteretic systems. Nonlinear Dynamics, 2016, 86, 1445-1454.	2.7	20
4	Shifting nonlinear phenomena in a DC–DC converter using a fuzzy logic controller. Mathematics and Computers in Simulation, 2008, 76, 398-409.	2.4	14
5	A FUZZY CONTROLLER SYNTHESIS FOR A BOOST CONVERTER. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 181-186.	0.4	13
6	On the modelling of DCâ€DC converters: An enhanced approach. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2011, 24, 36-57.	1.2	10
7	Design of an optimized fractional order fuzzy PID controller for a piezoelectric actuator. , 2014, , .		8
8	Identification of the PEA hysteresis property using a fractional order model. , 2014, , .		7
9	Identification of the PEA Hysteresis Property Using a Minimum Variance Scheme. International Journal of Computer and Electrical Engineering, 2014, 6, 290-293.	0.2	7
10	Robust adaptive fuzzy sliding mode controller for nonlinear uncertain hysteretic systems. Transactions of the Institute of Measurement and Control, 2020, 42, 2519-2532.	1.1	6
11	Fuzzy identification and control of a piezoelectric actuator. , 2015, , .		4
12	Sliding Mode Control of a Three-Phase Inverter with an Output LC Filter. , 2018, , .		4
13	Spectral decomposition based approach for DC–DC converters modeling. International Journal of Electrical Power and Energy Systems, 2014, 61, 288-297.	3.3	3
14	Design of an adaptive fuzzy sliding mode controller for non-linear hysteretic systems. , 2015, , .		3
15	Adaptive fuzzy synergetic control of nonlinear systems with unknown backlash-like hysteresis. , 2015, , .		3
16	ENHANCED MODELLING TECHNIQUE FOR DC-DC POWER CONVERTERS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 383-388.	0.4	2
17	Fuzzy controller synthesis for a DC-DC converter. , 2009, , .		2
18	RIM: A Matlab software tool for recursive identification methods. International Journal of Automation and Computing, 2015, 12, 482-489.	4.5	2

#	Article	IF	CITATIONS
19	Piecewise smooth dynamical systems modeling based on Putzer and Fibonacci-Horner theorems: DC-DC converters case. International Journal of Automation and Computing, 2016, 13, 246-258.	4.5	2
20	Comments on "Design of practical sliding-mode controllers with constant switching frequency for power converters― Electric Power Systems Research, 2012, 91, 113-117.	2.1	1
21	Modeling of DC-DC converters based on Fibonacci-Horner theorem. , 2013, , .		1
22	Optimized sliding mode control for DC-DC converters using simplex-PSO techniques. , 2013, , .		1
23	On the design of robust adaptive fuzzy sliding mode controller for nonlinear uncertain systems with hysteresis input. , 2018, , .		1
24	Backstepping global and structural stabilization of direct current/direct current boost converter. International Journal of Circuit Theory and Applications, 0, , .	1.3	1
25	DC-DC converter averaged current regulation and nonlinear phenomena suppressing by fuzzy logic controller. , 2006, , .		0
26	Backstepping Control of Abnormal Behaviours in DC-DC Boost Converter. Lecture Notes in Electrical Engineering, 2019, , 3-13.	0.3	O