Radhika P Atit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067776/publications.pdf

Version: 2024-02-01

279798 377865 2,557 36 23 34 citations h-index g-index papers 38 38 38 3584 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Skin Fibrosis and Recovery Is Dependent on Wnt Activation via DPP4. Journal of Investigative Dermatology, 2022, 142, 1597-1606.e9.	0.7	10
2	EZH2 modulates retinoic acid signaling to ensure myotube formation during development. FEBS Letters, 2022, 596, 1672-1685.	2.8	3
3	Are ERK and Wnt <i>Fate</i> d to Reinforce Calvarial Osteoblast Identity?. FASEB Journal, 2021, 35, .	0.5	O
4	Wnt-Dependent Activation of ERK Mediates Repression of Chondrocyte Fate during Calvarial Development. Journal of Developmental Biology, 2021, 9, 23.	1.7	9
5	Dermal EZH2 orchestrates dermal differentiation and epidermal proliferation during murine skin development. Developmental Biology, 2021, 478, 25-40.	2.0	6
6	Polycomb Repressive Complex 2: a Dimmer Switch of Gene Regulation in Calvarial Bone Development. Current Osteoporosis Reports, 2020, 18, 378-387.	3.6	7
7	What Do Animal Models Teach Us About Congenital Craniofacial Defects?. Advances in Experimental Medicine and Biology, 2020, 1236, 137-155.	1.6	2
8	A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nature Communications, 2019, 10, 5023.	12.8	51
9	Oscillatory cortical forces promote three dimensional cell intercalations that shape the murine mandibular arch. Nature Communications, 2019, 10, 1703.	12.8	52
10	Wnt/βâ€catenin signaling in the mouse embryonic cranial mesenchyme is required to sustain the emerging differentiated meningeal layers. Genesis, 2019, 57, e23279.	1.6	14
11	A tale of two cities: The genetic mechanisms governing calvarial bone development. Genesis, 2019, 57, e23248.	1.6	34
12	PRC2 Is Dispensable <i>in Vivo</i> for β-Catenin-Mediated Repression of Chondrogenesis in the Mouse Embryonic Cranial Mesenchyme. G3: Genes, Genomes, Genetics, 2018, 8, 491-503.	1.8	15
13	Dermal fibroblast in cutaneous development and healing. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e307.	5.9	128
14	Stage-specific roles of Ezh2 and Retinoic acid signaling ensure calvarial bone lineage commitment. Developmental Biology, 2018, 443, 173-187.	2.0	20
15	Wnt \hat{l}^2 -catenin Signaling Pathway Regulates Specific IncRNAs That Impact Dermal Fibroblasts and Skin Fibrosis. Frontiers in Genetics, 2017, 8, 183.	2.3	27
16	A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development. PLoS Genetics, 2016, 12, e1006150.	3.5	28
17	<i>Twist1</i> contributes to cranial bone initiation and dermal condensation by maintaining wnt signaling responsiveness. Developmental Dynamics, 2016, 245, 144-156.	1.8	29
18	Defining the identity of mouse embryonic dermal fibroblasts. Genesis, 2016, 54, 415-430.	1.6	23

#	Article	IF	Citations
19	Sustained βâ€catenin activity in dermal fibroblasts promotes fibrosis by upâ€regulating expression of extracellular matrix proteinâ€coding genes. Journal of Pathology, 2015, 235, 686-697.	4.5	89
20	Distinct Requirements for Cranial Ectoderm and Mesenchyme-Derived Wnts in Specification and Differentiation of Osteoblast and Dermal Progenitors. PLoS Genetics, 2014, 10, e1004152.	3 . 5	39
21	Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. Journal of Investigative Dermatology, 2013, 133, 31-41.	0.7	180
22	Sustained \hat{I}^2 -Catenin Activity in Dermal Fibroblasts Is Sufficient for Skin Fibrosis. Journal of Investigative Dermatology, 2012, 132, 2469-2472.	0.7	36
23	Twist1 mediates repression of chondrogenesis by \hat{l}^2 -catenin to promote cranial bone progenitor specification. Development (Cambridge), 2012, 139, 4428-4438.	2.5	52
24	Dermal \hat{l}^2 -catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development (Cambridge), 2012, 139, 1522-1533.	2.5	221
25	Wnt/βâ€catenin signaling is hyperactivated in systemic sclerosis and induces Smadâ€dependent fibrotic responses in mesenchymal cells. Arthritis and Rheumatism, 2012, 64, 2734-2745.	6.7	193
26	Visualizing canonical Wnt signaling during mouse craniofacial development. Developmental Dynamics, 2010, 239, 354-363.	1.8	56
27	Role of canonical Wnt signaling \hat{l}^2 -catenin via <i>Dermo1</i> in cranial dermal cell development. Development (Cambridge), 2010, 137, 3973-3984.	2.5	57
28	Wnt/ \hat{l}^2 -catenin signaling directs multiple stages of tooth morphogenesis. Developmental Biology, 2008, 313, 210-224.	2.0	340
29	Mechanical modulation of osteochondroprogenitor cell fate. International Journal of Biochemistry and Cell Biology, 2008, 40, 2720-2738.	2.8	98
30	\hat{l}^2 -Catenin has sequential roles in the survival and specification of ventral dermis. Development (Cambridge), 2008, 135, 2321-2329.	2.5	63
31	\hat{l}^2 -catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Developmental Biology, 2006, 296, 164-176.	2.0	348
32	EGF Signaling Patterns the Feather Array by Promoting the Interbud Fate. Developmental Cell, 2003, 4, 231-240.	7.0	39
33	A Novel Cytokine Pathway Suppresses Glial Cell Melanogenesis after Injury to Adult Nerve. Journal of Neuroscience, 2002, 22, 9831-9840.	3.6	68
34	Single Cell Ras-GTP Analysis Reveals Altered Ras Activity in a Subpopulation of Neurofibroma Schwann Cells but Not Fibroblasts. Journal of Biological Chemistry, 2000, 275, 30740-30745.	3.4	119
35	The Nf1 Tumor Suppressor Regulates Mouse Skin Wound Healing, Fibroblast Proliferation, and Collagen Deposited by Fibroblasts. Journal of Investigative Dermatology, 1999, 112, 835-842.	0.7	99
36	Oscillatory cortical forces promote three dimensional mesenchymal cell intercalations to shape the mandibular arch. SSRN Electronic Journal, 0, , .	0.4	1