
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067772/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of the Surface Chemistry of Metal–Organic Polyhedra in Their Assembly into Ultrathin<br>Films for Gas Separation. ACS Applied Materials & Interfaces, 2022, 14, 27495-27506.                                                                         | 4.0 | 6         |
| 2  | Solvent-exchange process in MOF ultrathin films and its effect on CO2 and methanol adsorption.<br>Journal of Colloid and Interface Science, 2021, 590, 72-81.                                                                                                  | 5.0 | 17        |
| 3  | Coating of Conducting and Insulating Threads with Porous MOF Particles through<br>Langmuir-Blodgett Technique. Nanomaterials, 2021, 11, 160.                                                                                                                   | 1.9 | 3         |
| 4  | Ultrathin Films of Porous Metal–Organic Polyhedra for Gas Separation. Chemistry - A European<br>Journal, 2020, 26, 143-147.                                                                                                                                    | 1.7 | 23        |
| 5  | Vanadyl spin qubit 2D arrays and their integration on superconducting resonators. Materials<br>Horizons, 2020, 7, 885-897.                                                                                                                                     | 6.4 | 41        |
| 6  | Methanol and Humidity Capacitive Sensors Based on Thin Films of MOF Nanoparticles. ACS Applied<br>Materials & Interfaces, 2020, 12, 4155-4162.                                                                                                                 | 4.0 | 113       |
| 7  | Highly Selective Metal–Organic Framework Textile Humidity Sensor. ACS Applied Materials &<br>Interfaces, 2020, 12, 29999-30006.                                                                                                                                | 4.0 | 38        |
| 8  | Volumetric properties of three pyridinium-based ionic liquids with a common cation or anion. Fluid<br>Phase Equilibria, 2020, 521, 112732.                                                                                                                     | 1.4 | 7         |
| 9  | Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr). Beilstein<br>Journal of Nanotechnology, 2019, 10, 654-665.                                                                                                                   | 1.5 | 7         |
| 10 | The fabrication of ultrathin films and their gas separation performance from polymers of intrinsic<br>microporosity with two-dimensional (2D) and three-dimensional (3D) chain conformations. Journal of<br>Colloid and Interface Science, 2019, 536, 474-482. | 5.0 | 20        |
| 11 | Interfacial tensions of pyridinium-based ionic liquids and n-alkanes or n-alkanols. Journal of<br>Molecular Liquids, 2018, 252, 469-474.                                                                                                                       | 2.3 | 5         |
| 12 | Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance. Journal of Colloid and Interface Science, 2018, 519, 88-96.                                                                      | 5.0 | 30        |
| 13 | Thin-Film Nanocomposite Membrane with the Minimum Amount of MOF by the Langmuir–Schaefer<br>Technique for Nanofiltration. ACS Applied Materials & Interfaces, 2018, 10, 1278-1287.                                                                             | 4.0 | 94        |
| 14 | Thermodynamic behaviour of alkyl lactate–alkanol systems. Journal of Chemical Thermodynamics,<br>2018, 127, 33-38.                                                                                                                                             | 1.0 | 5         |
| 15 | Comparative Study of the Thermophysical Properties of 2-Ethylthiophene and 2-Ethylfuran. Journal of<br>Chemical & Engineering Data, 2018, 63, 3274-3284.                                                                                                       | 1.0 | 5         |
| 16 | A Porphyrin Spin Qubit and Its 2D Framework Nanosheets. Advanced Functional Materials, 2018, 28, 1801695.                                                                                                                                                      | 7.8 | 72        |
| 17 | Homogeneous thin coatings of zeolitic imidazolate frameworks prepared on quartz crystal sensors for CO2 adsorption. Microporous and Mesoporous Materials, 2018, 272, 44-52.                                                                                    | 2.2 | 19        |
| 18 | Thermophysical Characterization of Furfuryl Esters: Experimental and Modeling. Energy & Fuels, 2017–31–4143-4154                                                                                                                                               | 2.5 | 6         |

2

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ultrathin Composite Polymeric Membranes for CO <sub>2</sub> /N <sub>2</sub> Separation with<br>Minimum Thickness and High CO <sub>2</sub> Permeance. ChemSusChem, 2017, 10, 4014-4017.                                           | 3.6  | 36        |
| 20 | How exfoliated graphene oxide nanosheets organize at the water interface: evidence for a spontaneous bilayer self-assembly. Nanoscale, 2017, 9, 12543-12548.                                                                     | 2.8  | 22        |
| 21 | Thermophysical characterization of 1-ethylpyridinium triflate and comparison with similar ionic liquids. Journal of Chemical Thermodynamics, 2016, 103, 395-402.                                                                 | 1.0  | 15        |
| 22 | Langmuir–Blodgett Films of the Metal–Organic Framework MIL-101(Cr): Preparation, Characterization,<br>and CO <sub>2</sub> Adsorption Study Using a QCM-Based Setup. ACS Applied Materials &<br>Interfaces, 2016, 8, 16486-16492. | 4.0  | 49        |
| 23 | Experimental and predicted vapour–liquid equilibrium of the binary mixtures n-heptaneÂ+Âchlorobutane<br>isomers. Fluid Phase Equilibria, 2016, 409, 72-77.                                                                       | 1.4  | 4         |
| 24 | Fabrication of ultrathin films containing the metal organic framework Fe-MIL-88B-NH 2 by the<br>Langmuir–Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects,<br>2015, 470, 161-170.            | 2.3  | 28        |
| 25 | Metal–organic framework based mixed matrix membranes: a solution for highly efficient<br>CO <sub>2</sub> capture?. Chemical Society Reviews, 2015, 44, 2421-2454.                                                                | 18.7 | 732       |
| 26 | Excess properties from pïT data for n-heptane+isomeric chlorobutane mixtures. Thermochimica Acta,<br>2015, 614, 100-109.                                                                                                         | 1.2  | 4         |
| 27 | Thermophysical study of the furan family. Thermochimica Acta, 2015, 617, 54-64.                                                                                                                                                  | 1.2  | 27        |
| 28 | Thermodynamic study of the surface of liquid mixtures containing pyridinium-based ionic liquids and alkanols. Journal of Chemical Thermodynamics, 2014, 78, 234-240.                                                             | 1.0  | 16        |
| 29 | Thermophysical Properties of the Binary Mixture 1-Propylpyridinium Tetrafluoroborate with<br>Methanol. Journal of Chemical & Engineering Data, 2014, 59, 1564-1573.                                                              | 1.0  | 23        |
| 30 | Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films. Journal of Materials Chemistry C, 2014, 2, 7348-7355.                                            | 2.7  | 36        |
| 31 | Physicochemical Study of n-Ethylpyridinium bis(trifluoromethylsulfonyl)imide Ionic Liquid. Journal of<br>Solution Chemistry, 2014, 43, 696-710.                                                                                  | 0.6  | 37        |
| 32 | Thermophysical properties of lactates. Thermochimica Acta, 2014, 575, 305-312.                                                                                                                                                   | 1.2  | 36        |
| 33 | Study of an ethylene oxide-terminated bent–core compound: Synthesis and Langmuir–Blodgett film<br>structure. Journal of Colloid and Interface Science, 2013, 406, 60-68.                                                         | 5.0  | 4         |
| 34 | Thermophysical study of methyl levulinate. Journal of Chemical Thermodynamics, 2013, 65, 34-41.                                                                                                                                  | 1.0  | 35        |
| 35 | Experimental and VTPR-predicted volumetric properties of branched hexanes. Fluid Phase Equilibria, 2013, 338, 141-147.                                                                                                           | 1.4  | 8         |
| 36 | lonic Conductivities of Binary Mixtures Containing Pyridinium-Based Ionic Liquids and Alkanols.<br>Journal of Chemical & Engineering Data, 2013, 58, 1613-1620.                                                                  | 1.0  | 25        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Volumetric Study of the Mixtures <i>n</i> -Hexane + Isomeric Chlorobutane: Experimental<br>Characterization and Volume Translated Peng–Robinson Predictions. Journal of Physical Chemistry B,<br>2013, 117, 10284-10292.                     | 1.2 | 6         |
| 38 | Viscosimetric Study of Binary Mixtures Containing Pyridinium-Based Ionic Liquids and Alkanols.<br>Journal of Chemical & Engineering Data, 2012, 57, 3549-3556.                                                                               | 1.0 | 26        |
| 39 | Experimental and Theoretical Study of Two Pyridinium-Based Ionic Liquids. Journal of Solution Chemistry, 2012, 41, 1836-1852.                                                                                                                | 0.6 | 29        |
| 40 | Volumetric Properties of Short-Chain Chloroalkanes. Journal of Chemical & Engineering Data, 2012, 57, 2076-2083.                                                                                                                             | 1.0 | 8         |
| 41 | Influence of the liquid crystal behaviour on the Langmuir and Langmuir–Blodgett film<br>supramolecular architecture of an ionic liquid crystal. Journal of Colloid and Interface Science, 2012,<br>375, 94-101.                              | 5.0 | 4         |
| 42 | Experimental and predicted properties of the binary mixtures containing an isomeric chlorobutane and butyl ethyl ether. Journal of Chemical Thermodynamics, 2012, 51, 150-158.                                                               | 1.0 | 6         |
| 43 | Simultaneous Prediction of Densities and Vapor–Liquid Equilibria of Mixtures Containing an Isomeric<br>Chlorobutane and Methyl tert-Butyl Ether Using the VTPR Model. Industrial & Engineering<br>Chemistry Research, 2011, 50, 14193-14202. | 1.8 | 4         |
| 44 | lsothermal vapour–liquid equilibria and excess enthalpies for the binary mixtures containing an isomeric chlorobutane and diisopropyl ether. Fluid Phase Equilibria, 2011, 308, 8-14.                                                        | 1.4 | 6         |
| 45 | Air–water interfacial behavior of linear-dendritic block copolymers containing PEG and azobenzene chromophores. Journal of Colloid and Interface Science, 2011, 359, 389-398.                                                                | 5.0 | 4         |
| 46 | Study of the conductivity behavior of pyridinium-based ionic liquids. Electrochimica Acta, 2010, 55, 2252-2257.                                                                                                                              | 2.6 | 68        |
| 47 | Photochemical behaviour of an acid-terminated azopolymer in solution and in Langmuir–Blodgett<br>films. Current Applied Physics, 2010, 10, 874-879.                                                                                          | 1.1 | 5         |
| 48 | Surface Tensions of the Ternary Mixtures Containing an Isomeric Butanol + <i>n</i> -Hexane +<br>1-Chlorobutane at 298.15 K. Journal of Chemical & Engineering Data, 2010, 55, 3532-3537.                                                     | 1.0 | 9         |
| 49 | Isothermal Vaporâ^'Liquid Equilibrium of Ternary Mixtures Containing 2-Methyl-1-propanol or<br>2-Methyl-2-propanol, <i>n</i> -Hexane, and 1-Chlorobutane at 298.15 K. Journal of Chemical &<br>Engineering Data, 2010, 55, 739-744.          | 1.0 | 3         |
| 50 | Anion Influence on Thermophysical Properties of Ionic Liquids: 1-Butylpyridinium Tetrafluoroborate<br>and 1-Butylpyridinium Triflate. Journal of Physical Chemistry B, 2010, 114, 3601-3607.                                                 | 1.2 | 80        |
| 51 | (Vapour+liquid) equilibrium and excess Gibbs functions of ternary mixtures containing 1-butanol or<br>2-butanol, n-hexane, and 1-chlorobutane at T=298.15K. Journal of Chemical Thermodynamics, 2009, 41,<br>1030-1034.                      | 1.0 | 4         |
| 52 | Molecular Arrangement in Langmuir and Langmuirâ^'Blodgett Films of a Mesogenic Bent-Core<br>Carboxylic Acid. Langmuir, 2009, 25, 12332-12339.                                                                                                | 1.6 | 13        |
| 53 | Supramolecular Architecture in Langmuir Films of a Luminescent Ionic Liquid Crystal. Journal of Physical Chemistry C, 2009, 113, 18827-18834.                                                                                                | 1.5 | 11        |
| 54 | Refractive Indices of the Ternary Mixtures Butanol + n-Hexane + 1-Chlorobutane. Journal of Solution<br>Chemistry, 2008, 37, 1499-1510.                                                                                                       | 0.6 | 13        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Structural characterization and properties of an azopolymer arranged in Langmuir and<br>Langmuir–Blodgett films. Journal of Colloid and Interface Science, 2008, 319, 277-286.                                                   | 5.0 | 10        |
| 56 | Densities and Viscosities of the Ternary Mixtures 2-Methyl-1-propanol (or 2-Methyl-2-propanol) +<br><i>N</i> -Hexane + 1-Chlorobutane at 298.15 K. Journal of Chemical & Engineering Data, 2008, 53,<br>1223-1227.               | 1.0 | 9         |
| 57 | Physicochemical Characterization of <i>n</i> -Butyl-3-methylpyridinium Dicyanamide Ionic Liquid.<br>Journal of Physical Chemistry B, 2008, 112, 12461-12467.                                                                     | 1.2 | 52        |
| 58 | Spectroscopic Characterization and Langmuirâ^'Blodgett Films of a Novel Azopolymer Material.<br>Langmuir, 2007, 23, 1804-1809.                                                                                                   | 1.6 | 12        |
| 59 | Mixed Langmuir and Langmuirâ^'Blodgett Films of a Proton Sponge and a Fatty Acid:Â Influence of the<br>Subphase Nature on the Interactions between the Two Components. Journal of Physical Chemistry B,<br>2007, 111, 2845-2855. | 1.2 | 7         |
| 60 | Phase Equilibrium of Binary Mixtures of Cyclic Ethers + Chlorobutane Isomers:  Experimental<br>Measurements and SAFT-VR Modeling. Journal of Physical Chemistry B, 2007, 111, 9588-9597.                                         | 1.2 | 16        |
| 61 | lsomerization Behavior of an Azopolymer in Terms of the Langmuirâ^'Blodgett Film Thickness and the<br>Transference Surface Pressure. Macromolecules, 2007, 40, 2058-2069.                                                        | 2.2 | 18        |
| 62 | Thermodynamic properties of binary mixtures formed by cyclic ethers and chloroalkanes. Journal of Thermal Analysis and Calorimetry, 2007, 90, 587-595.                                                                           | 2.0 | 20        |
| 63 | Electrochemical and photoelectrochemical response of electrodes coated with LB films of an azopolymer. Electrochimica Acta, 2007, 52, 5086-5094.                                                                                 | 2.6 | 9         |
| 64 | Densities and Viscosities of the Binary Mixtures of Tetrahydrofuran with Isomeric Chlorobutanes at 298.15 K and 313.15 K. Journal of Chemical & Engineering Data, 2006, 51, 1321-1325.                                           | 1.0 | 33        |
| 65 | Speeds of Sound and Isentropic Compressibilities for Binary Mixtures of a Cyclic Diether with a Cyclic Compound at Three Temperatures. International Journal of Thermophysics, 2006, 27, 760-776.                                | 1.0 | 14        |
| 66 | Thermophysical Properties of Mixtures of Tetrahydropyran with Chlorobutanes. International<br>Journal of Thermophysics, 2006, 27, 1406-1418.                                                                                     | 1.0 | 19        |
| 67 | Volumetric and refractive properties of binary mixtures containing 1,3-dioxolane and isomeric chlorobutanes. Journal of Thermal Analysis and Calorimetry, 2006, 83, 735-745.                                                     | 2.0 | 32        |
| 68 | Example of an organic reaction in a Langmuir film: Reduction of an amphiphilic ketone by NaBH4.<br>Journal of Colloid and Interface Science, 2005, 289, 574-580.                                                                 | 5.0 | 1         |
| 69 | Thermophysical properties of the binary mixtures of 2-methyl-tetrahydrofuran with benzene and halobenzenes. Thermochimica Acta, 2005, 439, 1-7.                                                                                  | 1.2 | 26        |
| 70 | Monolayers of Salen Derivatives as Catalytic Planes for Alkene Oxidation in Water. Chemistry - A<br>European Journal, 2005, 11, 6032-6039.                                                                                       | 1.7 | 11        |
| 71 | Volumetric and acoustic properties of the ternary system (1-butanol+1,4-dioxane+cyclohexane).<br>Journal of Thermal Analysis and Calorimetry, 2005, 79, 51-57.                                                                   | 2.0 | 10        |
| 72 | Experimental data of isobaric vapour–liquid equilibrium for binary mixtures containing<br>tetrahydrofuran and isomeric chlorobutanes. Physics and Chemistry of Liquids, 2005, 43, 299-307.                                       | 0.4 | 14        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Surface Behavior of the 1-Bromobutane with Isomeric Butanol Mixtures. Journal of Physical Chemistry B, 2005, 109, 23096-23102.                                                                           | 1.2 | 26        |
| 74 | Experimental and Predicted Viscosities of the Ternary Mixture (Hexane + 1,3-Dioxolane + 2-Butanol) at 298.15 and 313.15 K. Journal of Chemical & Engineering Data, 2005, 50, 722-726.                    | 1.0 | 8         |
| 75 | Formation of Gold Nanoparticles in a Side-Chain Liquid Crystalline Network:Â Influence of the<br>Structure and Macroscopic Order of the Material. Chemistry of Materials, 2005, 17, 5228-5230.           | 3.2 | 26        |
| 76 | Speeds of Sound and Isentropic Compressibilities of Binary Mixtures Containing Cyclic Ethers and Haloalkanes at 298.15 and 313.15 K. International Journal of Thermophysics, 2004, 25, 1735-1746.        | 1.0 | 42        |
| 77 | A Catalytic Langmuir Film as a Model for Heterogeneous and Homogeneous Catalytic Processes.<br>Angewandte Chemie - International Edition, 2004, 43, 6174-6177.                                           | 7.2 | 23        |
| 78 | Excess molar volumes and enthalpies of the ternary system (2-butanol + 1,3-dioxolane + n-hexane) at<br>298.15 and 313.15K. Thermochimica Acta, 2004, 423, 49-55.                                         | 1.2 | 11        |
| 79 | Excess properties of the ternary system (hexane + 1,3-dioxolane + 1-butanol) at 298.15 and 313.15 K. Fluid<br>Phase Equilibria, 2003, 211, 61-73.                                                        | 1.4 | 18        |
| 80 | Viscosities of Binary Mixtures of Isomeric Butanols or Isomeric Chlorobutanes with<br>2-Methyltetrahydrofuran. Journal of Chemical & Engineering Data, 2003, 48, 1296-1300.                              | 1.0 | 36        |
| 81 | Vaporâ~'Liquid Equilibrium and Volumetric Measurements for Binary Mixtures of 1,4-Dioxane with<br>Isomeric Chlorobutanes. Journal of Chemical & Engineering Data, 2003, 48, 887-891.                     | 1.0 | 21        |
| 82 | Experimental values and ERAS model calculations for excess molar volumes and enthalpies of the ternary system 2-butanol + 1,3-dioxolane + cyclohexane. Canadian Journal of Chemistry, 2003, 81, 357-363. | 0.6 | 18        |
| 83 | Densities and Speeds of Sound of the Ternary Mixture 2-Butanol Plus 1-Chlorobutane Plus<br>Tetrahydrofuran. Physics and Chemistry of Liquids, 2003, 41, 239-247.                                         | 0.4 | 5         |
| 84 | Isobaric Vapour-Liquid Equilibrium of Ternary Mixtures Cyclohexane (or n -Hexane) Plus 1,3-Dioxolane<br>Plus 2-Butanol at 40.0 and 101.3 kPa. Physics and Chemistry of Liquids, 2003, 41, 1-13.          | 0.4 | 6         |
| 85 | Electrochemistry of Langmuir-Blodgett Films Incorporating Both a Viologen Derivative and Tetracyanoquinodimethane. Journal of the Electrochemical Society, 2002, 149, E402.                              | 1.3 | 7         |
| 86 | Excess properties of the ternary system cyclohexane + 1,3-dioxolane + 1-butanol at 298.15 and 313.15 K.<br>Fluid Phase Equilibria, 2002, 202, 385-397.                                                   | 1.4 | 20        |
| 87 | Isobaric vapour–liquid equilibrium of binary and ternary mixtures containing cyclohexane, n-hexane, 1,3-dioxolane and 1-butanol at 40.0 and 101.3 kPa. Chemical Engineering Journal, 2002, 88, 1-9.      | 6.6 | 16        |
| 88 | Excess molar enthalpies of 1,3-dioxolane, or 1,4-dioxane with isomeric butanols. Journal of Chemical<br>Thermodynamics, 2002, 34, 1351-1360.                                                             | 1.0 | 30        |
| 89 | Title is missing!. International Journal of Thermophysics, 2002, 23, 1587-1598.                                                                                                                          | 1.0 | 13        |
| 90 | Density and Speed of Sound for Binary Mixtures of a Cyclic Ether with a Butanol Isomer. Journal of<br>Solution Chemistry, 2002, 31, 905-915.                                                             | 0.6 | 51        |

| #  | Article                                                                                                                                                                                                                            | IF              | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 91 | Experimental and predicted viscosities of the binary system (n-hexane + 1,3-dioxolane) and for the<br>ternary system (n-hexane + 1,3-dioxolane + 1-butanol) at 298.15 and 313.15 K. Fluid Phase Equilibria, 2001,<br>180, 211-220. | 1.4             | 22            |
| 92 | Isobaric (vapour + liquid) equilibrium of (1,3-dioxolane, or 1,4-dioxane+ 1-butanol, or 2-butanol) at 40.0<br>kPa and 101.3 kPa. Journal of Chemical Thermodynamics, 2001, 33, 1361-1373.                                          | 1.0             | 20            |
| 93 | Densities of (2-butanol +n-hexane + 1-butylamine) atT= 298.15 andT= 313.15 K: excess and partial excess molar volumes and application of the ERAS model. Journal of Chemical Thermodynamics, 2000, 32, 1551-1568.                  | 1.0             | 27            |
| 94 | Isentropic compressibilities of the ternary mixture (cyclohexane + tetrahydrofuran +) Tj ETQq0 0 0 rgBT /Overlock                                                                                                                  | 10 Tf 50<br>2.3 | 622 Td (chlor |
| 95 | Viscosities of the ternary mixture (2-butanol+n-hexane+1-butylamine) at 298.15 and 313.15 K. Fluid Phase<br>Equilibria, 2000, 169, 277-292.                                                                                        | 1.4             | 44            |
| 96 | Title is missing!. International Journal of Thermophysics, 2000, 21, 1185-1196.                                                                                                                                                    | 1.0             | 8             |
| 97 | Viscosities and Viscosity Predictions of the Ternary Mixture Cyclohexane + 1-3-Dioxolane + 1-Butanol at 298.15 and 313.15 K Journal of Chemical Engineering of Japan, 2000, 33, 740-746.                                           | 0.3             | 21            |

Experimental Viscosities and Viscosity Predictions of the Ternary Mixture (Cyclohexane +) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 Td ( 1.0 48 751-755.

| <sup>99</sup> 313.15 K. Fluid Phase Equilibria, 1999, 164, 143-155. | 99 | Viscosities of the ternary mixture (cyclohexane+tetrahydrofuran+chlorocyclohexane) at 298.15 and 313.15 K. Fluid Phase Equilibria, 1999, 164, 143-155. | 1.4 | 22 |  |
|---------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
|---------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|