Tadeusz Wierzchoå,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067353/publications.pdf

Version: 2024-02-01

687363 839539 40 376 13 18 citations g-index h-index papers 43 43 43 382 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitriding. Vacuum, 2009, 83, 1489-1493.	3.5	49
2	Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy. Micron, 2018, 107, 79-84.	2.2	27
3	Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding. Applied Surface Science, 2015, 334, 24-31.	6.1	26
4	Glow discharge assisted oxynitriding process of titanium for medical application. Applied Surface Science, 2015, 334, 74-79.	6.1	22
5	Corrosion resistance of NiTi shape memory alloy after hybrid surface treatment using low-temperature plasma. Vacuum, 2017, 137, 92-96.	3.5	22
6	Structure of Low Temperature Nitrided/Oxidized Layer Formed on NiTi Shape Memory Alloy. Solid State Phenomena, 2010, 163, 127-130.	0.3	18
7	Structure and hemocompatibility of nanocrystalline titanium nitride produced under glow-discharge conditions. Applied Surface Science, 2018, 436, 382-390.	6.1	18
8	NiTi shape-memory alloy oxidized in low-temperature plasma with carbon coating: Characteristic and a potential for cardiovascular applications. Applied Surface Science, 2017, 421, 89-96.	6.1	16
9	High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method. Journal of Magnesium and Alloys, 2014, 2, 265-273.	11.9	15
10	Properties of alumina coatings produced by gas-detonation method. Surface and Coatings Technology, 2004, 180-181, 556-560.	4.8	14
11	Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological application. Micron, 2018, 114, 14-22.	2.2	14
12	Glow discharge assisted oxynitriding of the binary Ti6Al2Cr2Mo titanium alloy. Vacuum, 2005, 79, 203-208.	3.5	13
13	Structure and properties of diffusive titanium nitride layers produced by hybrid method on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 2767-2775.	4.2	13
14	Hybrid a-CNH+TiO ₂ +TiN-type surface layers produced on NiTi shape memory alloy for cardiovascular applications. Nanomedicine, 2017, 12, 2233-2244.	3.3	13
15	Comparative assessment of the corrosion process of orthodontic archwires made of stainless steel, titanium–molybdenum and nickel–titanium alloys. Archives of Civil and Mechanical Engineering, 2018, 18, 941-947.	3.8	13
16	Structure and properties of composite surface layers produced on NiTi shape memory alloy by a hybrid method. Journal of Materials Science: Materials in Medicine, 2018, 29, 110.	3.6	11
17	Structure of Nitride and Nitride/Oxide Layers Formed on NiTi Alloy. Solid State Phenomena, 2012, 186, 259-262.	0.3	10
18	Influence of low temperature plasma oxynitriding on the mechanical behavior of NiTi shape memory alloys. Vacuum, 2018, 156, 135-139.	3.5	9

#	Article	IF	CITATIONS
19	Structure and corrosion resistance of titanium oxide layers produced on NiTi alloy in low-temperature plasma. International Journal of Materials Research, 2018, 109, 443-450.	0.3	8
20	Modifying the structure of glow discharge nitrided layers produced on high-nickel chromium-less steel with the participation of an athermal martensitic transformation. Surface and Coatings Technology, 2010, 204, 1375-1379.	4.8	7
21	Corrosion depth profiles of nitrided titanium alloy in acidified sulphate solution. Open Chemistry, 2013, 11, 2005-2011.	1.9	4
22	Surface modification of austenitic steel by various glow-discharge nitriding methods. Medziagotyra, 2015, 21, .	0.2	4
23	Improving the Properties of Composite Titanium Nitride Layers on the AZ91D Magnesium Alloy Using Hydrothermal Treatment. Materials, 2021, 14, 5903.	2.9	4
24	Processing by Hydrostatic Extrusion of Titanium Coated with Aluminides. Solid State Phenomena, 2006, 114, 63-68.	0.3	3
25	Influence of Low Temperature Glow Discharge Nitriding and/or Oxiding Process on Structure and Shape Memory Effect in NiTi Alloy. Materials Science Forum, 0, 738-739, 344-347.	0.3	3
26	Cathodic Cage Plasma Nitriding of Ti6Al4V Alloy. Medziagotyra, 2016, 22, .	0.2	3
27	Corrosion Resistance of NiTi Shape Memory Alloy after Nitriding and Oxynitriding Processes under Glow Discharge Conditions for Medical Applications. Key Engineering Materials, 0, 687, 92-97.	0.4	3
28	Formation of Nitrogen Doped Titanium Dioxide Surface Layer on NiTi Shape Memory Alloy. Materials, 2021, 14, 1575.	2.9	3
29	Characterization of Nitrided/Oxidized Layers Covering Ni-Ti Shape Memory Alloy. Solid State Phenomena, 2007, 130, 151-154.	0.3	2
30	The Structure and Properties Formation of the NiTi Shape Memory Rods after Hot Rotary Forging. Key Engineering Materials, 2016, 687, 11-18.	0.4	2
31	Plasma Modification of Carbon Coating Produced by RF CVD on Oxidized NiTi Shape Memory Alloy under Glow-Discharge Conditions. Materials, 2021, 14, 4842.	2.9	2
32	Structure and Mechanical Properties of Multi-Functional Layer Deposited on Surface of Ni–Ti Shape Memory Alloy. Materials Transactions, 2019, 60, 693-697.	1.2	2
33	Structure and Properties of the High Temperature Nitrided/Oxided Surface of Ni-Ti Alloy. Solid State Phenomena, 0, 154, 53-58.	0.3	1
34	Microstructural and corrosion resistance characterisation of NiTi shape memory alloy modified at low-temperature plasma with carbon coatings produced via RFCVD and IBAD methods. Corrosion Engineering Science and Technology, 2019, 54, 673-677.	1.4	1
35	Properties of Ti-6Al-7Nb titanium alloy nitrocarburized under glow discharge conditions. Acta of Bioengineering and Biomechanics, 2017, 19, 181-188.	0.4	1
36	Thrombocompatibility of Thin Dielectric Carbon Film Dependence on Electron Work Function of Metallic Substrate Material. Journal of Nanoscience and Nanotechnology, 2010, 10, 1367-1370.	0.9	0

#	Article	IF	CITATIONS
37	Formation Of Chromium Nitride Layers Produced By MOPACVD Processes Under Glow Discharge Conditions. , $2011, \ldots$		O
38	Wear and Corrosion Characteristics of the Layers Type (Mn-P) Formed on Aluminium Alloys. Solid State Phenomena, 2011, 183, 149-154.	0.3	0
39	Magnetic Force Microscopic Description of the Structure of Glow Discharge Nitrided Layers Produced on Ni27Ti2AlMoNb Steel. Solid State Phenomena, 0, 172-174, 851-856.	0.3	O
40	The Structure and Shape Memory of the Hot Extruded NiTi Alloy. Key Engineering Materials, 2016, 687, 19-24.	0.4	0