Sten Linnarsson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4067146/sten-linnarsson-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82	16,141	44	91
papers	citations	h-index	g-index
91	23,171 ext. citations	20.2	6.37
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
82	Single nucleus multi-omics identifies human cortical cell regulatory genome diversity <i>Cell Genomics</i> , 2022 , 2,		4
81	Comparative cellular analysis of motor cortex in human, marmoset and mouse. <i>Nature</i> , 2021 , 598, 111-7	1590.4	31
80	A multimodal cell census and atlas of the mammalian primary motor cortex. <i>Nature</i> , 2021 , 598, 86-102	50.4	44
79	Molecular architecture of the developing mouse brain. <i>Nature</i> , 2021 , 596, 92-96	50.4	39
78	A roadmap for the Human Developmental Cell Atlas. <i>Nature</i> , 2021 , 597, 196-205	50.4	18
77	Srebf1 Controls Midbrain Dopaminergic Neurogenesis. <i>Cell Reports</i> , 2020 , 31, 107601	10.6	5
76	Effects of Gluten Challenge on PBMC Gene Expression Profiles in Diet Treated Celiac Disease. <i>Frontiers in Immunology</i> , 2020 , 11, 594243	8.4	1
75	LifeTime and improving European healthcare through cell-based interceptive medicine. <i>Nature</i> , 2020 , 587, 377-386	50.4	56
74	A cell fitness selection model for neuronal survival during development. <i>Nature Communications</i> , 2019 , 10, 4137	17.4	6
73	Remodeling of secretory lysosomes during education tunes functional potential in NK cells. <i>Nature Communications</i> , 2019 , 10, 514	17.4	59
72	Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. <i>Molecular Psychiatry</i> , 2019 , 24, 182-197	15.1	31
71	Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. <i>Nature Neuroscience</i> , 2018 , 21, 869-880	25.5	199
70	Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. <i>Nature Neuroscience</i> , 2018 , 21, 290-299	25.5	169
69	Exome sequencing of primary breast cancers with paired metastatic lesions reveals metastasis-enriched mutations in the A-kinase anchoring protein family (AKAPs). <i>BMC Cancer</i> , 2018 , 18, 174	4.8	14
68	Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq. <i>Cell Reports</i> , 2018 , 24, 2179-2190.e7	10.6	99
67	RNA velocity of single cells. <i>Nature</i> , 2018 , 560, 494-498	50.4	1132
66	Molecular Architecture of the Mouse Nervous System. <i>Cell</i> , 2018 , 174, 999-1014.e22	56.2	1081

65	Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. <i>PLoS Biology</i> , 2018 , 16, e2006387	9.7	137
64	Spatial organization of the somatosensory cortex revealed by osmFISH. <i>Nature Methods</i> , 2018 , 15, 932-	935 .6	195
63	High-throughput chromatin accessibility profiling at single-cell resolution. <i>Nature Communications</i> , 2018 , 9, 3647	17.4	73
62	Genetic identification of brain cell types underlying schizophrenia. <i>Nature Genetics</i> , 2018 , 50, 825-833	36.3	295
61	Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. <i>Nature Genetics</i> , 2018 , 50, 920-927	36.3	312
60	Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. <i>Nature Genetics</i> , 2018 , 50, 912-919	36.3	475
59	Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses. <i>Cancer Research</i> , 2017 , 77, 1741-1752	10.1	15
58	Single-cell mRNA isoform diversity in the mouse brain. <i>BMC Genomics</i> , 2017 , 18, 126	4.5	44
57	Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. <i>Nature Biotechnology</i> , 2017 , 35, 444-452	44.5	178
56	Alternative TSSs are co-regulated in single cells in the mouse brain. <i>Molecular Systems Biology</i> , 2017 , 13, 930	12.2	10
55	Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. <i>Nature Neuroscience</i> , 2017 , 20, 176-188	25.5	226
54	The Human Cell Atlas 2017 ,		41
53	The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. <i>Science</i> , 2017 , 358, 64-69	33.3	233
52	Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. <i>Genome Medicine</i> , 2017 , 9, 114	14.4	48
51	A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. <i>Scientific Reports</i> , 2017 , 7, 6031	4.9	115
50	Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. <i>Cell Stem Cell</i> , 2017 , 21, 791-805.e9	18	18
49	STRT-seq-2i: dual-index 5Ssingle cell and nucleus RNA-seq on an addressable microwell array. <i>Scientific Reports</i> , 2017 , 7, 16327	4.9	50
48	The Human Cell Atlas. <i>ELife</i> , 2017 , 6,	8.9	937

47	Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. <i>PLoS ONE</i> , 2017 , 12, e0188772	3.7	15
46	Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. <i>Nature Neuroscience</i> , 2016 , 19, 1331-40	25.5	58
45	Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity. <i>Cell Systems</i> , 2016 , 3, 221-237.e9	10.6	202
44	A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease. <i>EMBO Journal</i> , 2016 , 35, 1963-78	13	52
43	Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos. <i>Scientific Reports</i> , 2016 , 6, 28995	4.9	23
42	Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. <i>Science</i> , 2016 , 352, 1326-1329	33.3	497
41	Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. <i>Science</i> , 2016 , 353, 78-82	33.3	944
40	Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. <i>Nature Biotechnology</i> , 2016 , 34, 175-183	44.5	250
39	Identification of CHD4 As a Potential Therapeutic Target of Acute Myeloid Leukemia. <i>Blood</i> , 2016 , 128, 1648-1648	2.2	2
38	NOD-like receptor signaling and inflammasome-related pathways are highlighted in psoriatic epidermis. <i>Scientific Reports</i> , 2016 , 6, 22745	4.9	51
37	The human PRD-like homeobox gene LEUTX has a central role in embryo genome activation. <i>Development (Cambridge)</i> , 2016 , 143, 3459-3469	6.6	21
36	Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. <i>Cell</i> , 2016 , 165, 1012-26	56.2	475
35	Origin, fate and dynamics of macrophages at central nervous system interfaces. <i>Nature Immunology</i> , 2016 , 17, 797-805	19.1	572
34	Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. <i>Cell</i> , 2016 , 167, 566-58	05 6 129	425
33	NEUROSCIENCE. A tree of the human brain. <i>Science</i> , 2015 , 350, 37	33.3	3
32	Sequencing Single Cells Reveals Sequential Stem Cell States. <i>Cell Stem Cell</i> , 2015 , 17, 251-2	18	4
31	Gene expression analysis of skin grafts and cultured keratinocytes using synthetic RNA normalization reveals insights into differentiation and growth control. <i>BMC Genomics</i> , 2015 , 16, 476	4.5	18
30	Novel PRD-like homeodomain transcription factors and retrotransposon elements in early human development. <i>Nature Communications</i> , 2015 , 6, 8207	17.4	57

29	A secretagogin locus of the mammalian hypothalamus controls stress hormone release. <i>EMBO Journal</i> , 2015 , 34, 36-54	13	46
28	Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. <i>Nature Neuroscience</i> , 2015 , 18, 145-53	25.5	1093
27	Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis. <i>Stem Cell Reports</i> , 2015 , 5, 843-855	8	63
26	Reprogramming Roadblocks Are System Dependent. Stem Cell Reports, 2015, 5, 350-64	8	23
25	Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. <i>Science</i> , 2015 , 347, 1138-42	33.3	1883
24	Amplification-free sequencing of cell-free DNA for prenatal non-invasive diagnosis of chromosomal aberrations. <i>Genomics</i> , 2015 , 105, 150-8	4.3	22
23	Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. <i>Cancer Cell</i> , 2014 , 25, 794-808	24.3	216
22	Quantitative single-cell RNA-seq with unique molecular identifiers. <i>Nature Methods</i> , 2014 , 11, 163-6	21.6	783
21	Selective calcium sensitivity in immature glioma cancer stem cells. <i>PLoS ONE</i> , 2014 , 9, e115698	3.7	19
20	Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. <i>PLoS ONE</i> , 2013 , 8, e85270	3.7	38
19	Highly multiplexed and strand-specific single-cell RNA 5Send sequencing. <i>Nature Protocols</i> , 2012 , 7, 813	8 -28 .8	205
18	Positional differences of axon growth rates between sensory neurons encoded by Runx3. <i>EMBO Journal</i> , 2012 , 31, 3718-29	13	23
17	Counting absolute numbers of molecules using unique molecular identifiers. <i>Nature Methods</i> , 2011 , 9, 72-4	21.6	637
16	Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. <i>Genome Research</i> , 2011 , 21, 1160-7	9.7	614
15	Recent advances in DNA sequencing methods - general principles of sample preparation. <i>Experimental Cell Research</i> , 2010 , 316, 1339-43	4.2	57
14	Dependence of developing group Ia afferents on neurotrophin-3. <i>Journal of Comparative Neurology</i> , 1995 , 363, 307-20	3.4	93
13	High-throughput chromatin accessibility profiling at single-cell resolution		1
12	Genetic identification Of brain cell types underlying schizophrenia		7

11	GWAS Meta-Analysis of Neuroticism (N=449,484) Identifies Novel Genetic Loci and Pathways	41
10	GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence	9
9	Single nucleus multi-omics links human cortical cell regulatory genome diversity to disease risk variants	23
8	Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse	33
7	Population-scale testing can suppress the spread of COVID-19	35
6	Molecular architecture of the developing mouse brain	19
5	A multimodal cell census and atlas of the mammalian primary motor cortex	12
4	Spatial organization of the somatosensory cortex revealed by cyclic smFISH	8
3	Molecular architecture of the mouse nervous system	10
2	Transcriptional maintenance of cortical somatostatin interneuron subtype identity during migration	3
1	Functional consequences of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals	3