Sten Linnarsson

List of Publications by Citations

Source: https://exaly.com/author-pdf/4067146/sten-linnarsson-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 16,141 44 91 g-index

91 23,171 20.2 6.37 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
82	Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. <i>Science</i> , 2015 , 347, 1138-42	33.3	1883
81	RNA velocity of single cells. <i>Nature</i> , 2018 , 560, 494-498	50.4	1132
80	Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. <i>Nature Neuroscience</i> , 2015 , 18, 145-53	25.5	1093
79	Molecular Architecture of the Mouse Nervous System. <i>Cell</i> , 2018 , 174, 999-1014.e22	56.2	1081
78	Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. <i>Science</i> , 2016 , 353, 78-82	33.3	944
77	The Human Cell Atlas. <i>ELife</i> , 2017 , 6,	8.9	937
76	Quantitative single-cell RNA-seq with unique molecular identifiers. <i>Nature Methods</i> , 2014 , 11, 163-6	21.6	783
75	Counting absolute numbers of molecules using unique molecular identifiers. <i>Nature Methods</i> , 2011 , 9, 72-4	21.6	637
74	Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. <i>Genome Research</i> , 2011 , 21, 1160-7	9.7	614
73	Origin, fate and dynamics of macrophages at central nervous system interfaces. <i>Nature Immunology</i> , 2016 , 17, 797-805	19.1	572
7 2	Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. <i>Science</i> , 2016 , 352, 1326-1329	33.3	497
71	Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. <i>Cell</i> , 2016 , 165, 1012-26	56.2	475
70	Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. <i>Nature Genetics</i> , 2018 , 50, 912-919	36.3	475
69	Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. <i>Cell</i> , 2016 , 167, 566-58	305€129	425
68	Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. <i>Nature Genetics</i> , 2018 , 50, 920-927	36.3	312
67	Genetic identification of brain cell types underlying schizophrenia. <i>Nature Genetics</i> , 2018 , 50, 825-833	36.3	295
66	Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. <i>Nature Biotechnology</i> , 2016 , 34, 175-183	44.5	250

(2015-2017)

65	The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. <i>Science</i> , 2017 , 358, 64-69	33.3	233
64	Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. <i>Nature Neuroscience</i> , 2017 , 20, 176-188	25.5	226
63	Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. <i>Cancer Cell</i> , 2014 , 25, 794-808	24.3	216
62	Highly multiplexed and strand-specific single-cell RNA 5Send sequencing. <i>Nature Protocols</i> , 2012 , 7, 813	- 28 .8	205
61	Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity. <i>Cell Systems</i> , 2016 , 3, 221-237.e9	10.6	202
60	Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. <i>Nature Neuroscience</i> , 2018 , 21, 869-880	25.5	199
59	Spatial organization of the somatosensory cortex revealed by osmFISH. <i>Nature Methods</i> , 2018 , 15, 932-	9 35 .6	195
58	Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. <i>Nature Biotechnology</i> , 2017 , 35, 444-452	44.5	178
57	Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. <i>Nature Neuroscience</i> , 2018 , 21, 290-299	25.5	169
56	Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. <i>PLoS Biology</i> , 2018 , 16, e2006387	9.7	137
55	A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. <i>Scientific Reports</i> , 2017 , 7, 6031	4.9	115
54	Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq. <i>Cell Reports</i> , 2018 , 24, 2179-2190.e7	10.6	99
53	Dependence of developing group Ia afferents on neurotrophin-3. <i>Journal of Comparative Neurology</i> , 1995 , 363, 307-20	3.4	93
52	High-throughput chromatin accessibility profiling at single-cell resolution. <i>Nature Communications</i> , 2018 , 9, 3647	17.4	73
51	Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis. <i>Stem Cell Reports</i> , 2015 , 5, 843-855	8	63
50	Remodeling of secretory lysosomes during education tunes functional potential in NK cells. <i>Nature Communications</i> , 2019 , 10, 514	17.4	59
49	Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. <i>Nature Neuroscience</i> , 2016 , 19, 1331-40	25.5	58
48	Novel PRD-like homeodomain transcription factors and retrotransposon elements in early human development. <i>Nature Communications</i> , 2015 , 6, 8207	17.4	57

47	Recent advances in DNA sequencing methods - general principles of sample preparation. <i>Experimental Cell Research</i> , 2010 , 316, 1339-43	4.2	57
46	LifeTime and improving European healthcare through cell-based interceptive medicine. <i>Nature</i> , 2020 , 587, 377-386	50.4	56
45	A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease. <i>EMBO Journal</i> , 2016 , 35, 1963-78	13	52
44	NOD-like receptor signaling and inflammasome-related pathways are highlighted in psoriatic epidermis. <i>Scientific Reports</i> , 2016 , 6, 22745	4.9	51
43	STRT-seq-2i: dual-index 5Ssingle cell and nucleus RNA-seq on an addressable microwell array. <i>Scientific Reports</i> , 2017 , 7, 16327	4.9	50
42	Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. <i>Genome Medicine</i> , 2017 , 9, 114	14.4	48
41	A secretagogin locus of the mammalian hypothalamus controls stress hormone release. <i>EMBO Journal</i> , 2015 , 34, 36-54	13	46
40	Single-cell mRNA isoform diversity in the mouse brain. <i>BMC Genomics</i> , 2017 , 18, 126	4.5	44
39	A multimodal cell census and atlas of the mammalian primary motor cortex. <i>Nature</i> , 2021 , 598, 86-102	50.4	44
38	The Human Cell Atlas 2017 ,		41
37	GWAS Meta-Analysis of Neuroticism (N=449,484) Identifies Novel Genetic Loci and Pathways		41
	dvas Meta Anatysis of Neurodicisiii (N=445,464) Identines Novet deficate Eoci and Factiways		<u>'</u>
36	Molecular architecture of the developing mouse brain. <i>Nature</i> , 2021 , 596, 92-96	50.4	
36 35		50.4 3.7	
	Molecular architecture of the developing mouse brain. <i>Nature</i> , 2021 , 596, 92-96 Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse		39
35	Molecular architecture of the developing mouse brain. <i>Nature</i> , 2021 , 596, 92-96 Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. <i>PLoS ONE</i> , 2013 , 8, e85270		39
35	Molecular architecture of the developing mouse brain. <i>Nature</i> , 2021 , 596, 92-96 Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. <i>PLoS ONE</i> , 2013 , 8, e85270 Population-scale testing can suppress the spread of COVID-19	3.7	39 38 35 33
35 34 33	Molecular architecture of the developing mouse brain. <i>Nature</i> , 2021 , 596, 92-96 Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. <i>PLoS ONE</i> , 2013 , 8, e85270 Population-scale testing can suppress the spread of COVID-19 Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse	3.7	39 38 35 33

29	Reprogramming Roadblocks Are System Dependent. Stem Cell Reports, 2015, 5, 350-64	8	23
28	Positional differences of axon growth rates between sensory neurons encoded by Runx3. <i>EMBO Journal</i> , 2012 , 31, 3718-29	13	23
27	Single nucleus multi-omics links human cortical cell regulatory genome diversity to disease risk variants	i	23
26	Amplification-free sequencing of cell-free DNA for prenatal non-invasive diagnosis of chromosomal aberrations. <i>Genomics</i> , 2015 , 105, 150-8	4.3	22
25	The human PRD-like homeobox gene LEUTX has a central role in embryo genome activation. <i>Development (Cambridge)</i> , 2016 , 143, 3459-3469	6.6	21
24	Selective calcium sensitivity in immature glioma cancer stem cells. <i>PLoS ONE</i> , 2014 , 9, e115698	3.7	19
23	Molecular architecture of the developing mouse brain		19
22	Gene expression analysis of skin grafts and cultured keratinocytes using synthetic RNA normalization reveals insights into differentiation and growth control. <i>BMC Genomics</i> , 2015 , 16, 476	4.5	18
21	Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. <i>Cell Stem Cell</i> , 2017 , 21, 791-805.e9	18	18
20	A roadmap for the Human Developmental Cell Atlas. <i>Nature</i> , 2021 , 597, 196-205	50.4	18
19	Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses. <i>Cancer Research</i> , 2017 , 77, 1741-1752	10.1	15
18	Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. <i>PLoS ONE</i> , 2017 , 12, e0188772	3.7	15
17	Exome sequencing of primary breast cancers with paired metastatic lesions reveals metastasis-enriched mutations in the A-kinase anchoring protein family (AKAPs). <i>BMC Cancer</i> , 2018 , 18, 174	4.8	14
16	A multimodal cell census and atlas of the mammalian primary motor cortex		12
15	Alternative TSSs are co-regulated in single cells in the mouse brain. <i>Molecular Systems Biology</i> , 2017 , 13, 930	12.2	10
14	Molecular architecture of the mouse nervous system		10
13	GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence		9
12	Spatial organization of the somatosensory cortex revealed by cyclic smFISH		8

11	Genetic identification Of brain cell types underlying schizophrenia		7	
10	A cell fitness selection model for neuronal survival during development. <i>Nature Communications</i> , 2019 , 10, 4137	17.4	6	
9	Srebf1 Controls Midbrain Dopaminergic Neurogenesis. <i>Cell Reports</i> , 2020 , 31, 107601	10.6	5	
8	Sequencing Single Cells Reveals Sequential Stem Cell States. <i>Cell Stem Cell</i> , 2015 , 17, 251-2	18	4	
7	Single nucleus multi-omics identifies human cortical cell regulatory genome diversity <i>Cell Genomics</i> , 2022 , 2,		4	
6	NEUROSCIENCE. A tree of the human brain. <i>Science</i> , 2015 , 350, 37	33.3	3	
5	Transcriptional maintenance of cortical somatostatin interneuron subtype identity during migration		3	
4	Functional consequences of genetic loci associated with intelligence in a meta-analysis of 87,740 individ	luals	3	
3	Identification of CHD4 As a Potential Therapeutic Target of Acute Myeloid Leukemia. <i>Blood</i> , 2016 , 128, 1648-1648	2.2	2	
2	High-throughput chromatin accessibility profiling at single-cell resolution		1	
1	Effects of Gluten Challenge on PBMC Gene Expression Profiles in Diet Treated Celiac Disease. <i>Frontiers in Immunology</i> , 2020 , 11, 594243	8.4	1	