
Fuminori Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4067137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a polyvinyl alcohol/sodium polyacrylate composite polymer membrane with cesium carbonate as a mobile carrier for highâ€performance <scp>CO₂</scp> capture. Polymers for Advanced Technologies, 2022, 33, 1677-1684.	3.2	1
2	Effects of the polymer composite composition and amine-based additives on the performance of a polymer composite CO2 separation membrane. Polymer Bulletin, 2021, 78, 513-528.	3.3	7
3	CO 2 â€facilitated transport membranes prepared by blending polyvinyl alcohol and various waterâ€absorbing agents. Journal of Applied Polymer Science, 2021, 138, 50191.	2.6	6
4	Factors for improving the performance of the separation membranes prepared by the blending of polyvinyl alcohol and a water absorbing agent. Polymer-Plastics Technology and Materials, 2021, 60, 659-669.	1.3	3
5	Physical properties of microspheres prepared by blending poly(lactide-co-glycolide) and poly lactide. Bulletin of Materials Science, 2021, 44, 1.	1.7	4
6	High performance CO ₂ -facilitated transport membrane fabricated by compounding amine-terminated dendrimer in composite of polyvinyl alcohol and water-absorbing agent. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 849-859.	2.2	2
7	Examination of Selection and Combination of Water-Absorbing Agent to Blend with Polyvinyl Alcohol (PVA) in Preparing CO2-Separation Membrane with High-Performance. Macromolecular Research, 2020, 28, 365-372.	2.4	10
8	Development of high-performance polymer membranes for CO2 separation by combining functionalities of polyvinyl alcohol (PVA) and sodium polyacrylate (PAANa). Journal of Polymer Research, 2019, 26, 1.	2.4	20
9	Preparation of Biodegradable Polymer Nanospheres Containing Manganese Porphyrin (Mn-Porphyrin). Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1010-1018.	3.7	2
10	Development of CO2 Molecular Gate Membranes for IGCC Process with CO2 Capture. Energy Procedia, 2017, 114, 613-620.	1.8	15
11	Optimization of a simple technique for preparation of monodisperse poly(lactide-co-glycolide) nanospheres. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	4
12	Facile technique for the preparation of monodispersed biodegradable polymer nanospheres using a solvent evaporation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 734-739.	4.7	10
13	Preparation of (hydrophilic) INZ/PLGA particles (microcapsules) employing a unique frozen water phase — investigation of optimal formulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 356-362.	4.7	4
14	Dermal administration of manganese porphyrin by iontophoresis. Materials Science and Engineering C, 2014, 41, 349-353.	7.3	7
15	Possibility for the development of cosmetics with PLGA nanospheres. Drug Development and Industrial Pharmacy, 2013, 39, 752-761.	2.0	15
16	Proposition of CO ₂ Removable Technology Using Membrane for Hydrogen Station. ECS Transactions, 2013, 51, 259-264.	0.5	7
17	Optimized preparation of biodegradable polymer particles encapsulating low-molecular-weight hydrophilic drugs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 402, 29-36.	4.7	7
18	Rapid preparation of monodisperse biodegradable polymer nanospheres using a membrane emulsification technique under low gas pressure. Journal of Polymer Research, 2011, 18, 2077-2085.	2.4	12

Fuminori Ito

#	Article	IF	CITATIONS
19	Technique to encapsulate a low molecular weight hydrophilic drug in biodegradable polymer particles in a liquid–liquid system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 368-373.	4.7	12
20	Control of drug loading efficiency and drug release behavior in preparation of hydrophilic-drug-containing monodisperse PLGA microspheres. Journal of Materials Science: Materials in Medicine, 2010, 21, 1563-1571.	3.6	20
21	Facile technique for preparing organic–inorganic composite particles: Monodisperse poly(lactide-co-glycolide) (PLGA) particles having silica nanoparticles on the surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 109-117.	4.7	20
22	Study of types and mixture ratio of organic solvent used to dissolve polymers for preparation of drug-containing PLGA microspheres. European Polymer Journal, 2009, 45, 658-667.	5.4	49
23	Preparation and properties of PLGA microspheres containing hydrophilic drugs by the SPG (shirasu) Tj ETQq1 1 0. 20-25.	.784314 rg 5.0	gBT /Overlock 37
24	Factors affecting the loading efficiency of water-soluble drugs in PLGA microspheres. Colloids and Surfaces B: Biointerfaces, 2008, 61, 25-29.	5.0	44
25	Effect of polyethylene glycol on preparation of rifampicin-loaded PLGA microspheres with membrane emulsification technique. Colloids and Surfaces B: Biointerfaces, 2008, 66, 65-70.	5.0	48
26	Incorporation of water-soluble drugs in PLGA microspheres. Colloids and Surfaces B: Biointerfaces, 2007, 54, 173-178.	5.0	52
27	Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. Journal of Controlled Release, 2007, 119, 69-76.	9.9	151
28	Selective delivery of rifampicin incorporated into poly(dl-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette–Guérin. Microbes and Infection, 2006, 8, 2484-2491.	1.9	51
29	Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Colloids and Surfaces B: Biointerfaces, 2004, 36, 35-42.	5.0	121
30	Preparation and properties of monodispersed rifampicin-loaded poly(lactide-co-glycolide) microspheres. Colloids and Surfaces B: Biointerfaces, 2004, 39, 17-21.	5.0	78