## Matthew G E Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066940/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019,<br>5, eaax0121.                                                                                    | 10.3 | 524       |
| 2  | Crop pests and predators exhibit inconsistent responses to surrounding landscape composition.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870. | 7.1  | 401       |
| 3  | Reframing landscape fragmentation's effects on ecosystem services. Trends in Ecology and Evolution, 2015, 30, 190-198.                                                                                    | 8.7  | 354       |
| 4  | Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research<br>Gaps. Ecosystems, 2013, 16, 894-908.                                                                    | 3.4  | 299       |
| 5  | Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach.<br>Ambio, 2019, 48, 1116-1128.                                                                            | 5.5  | 137       |
| 6  | Forest fragments modulate the provision of multiple ecosystem services. Journal of Applied Ecology, 2014, 51, 909-918.                                                                                    | 4.0  | 128       |
| 7  | The role of socio-economic factors in planning and managing urban ecosystem services. Ecosystem Services, 2018, 31, 102-110.                                                                              | 5.4  | 119       |
| 8  | Evidence that organic farming promotes pest control. Nature Sustainability, 2018, 1, 361-368.                                                                                                             | 23.7 | 117       |
| 9  | Increasing decision relevance of ecosystem service science. Nature Sustainability, 2021, 4, 161-169.                                                                                                      | 23.7 | 108       |
| 10 | Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales.<br>Environmental Research Letters, 2015, 10, 094014.                                                     | 5.2  | 93        |
| 11 | Towards a Threat Assessment Framework for Ecosystem Services. Trends in Ecology and Evolution, 2017, 32, 240-248.                                                                                         | 8.7  | 79        |
| 12 | Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. Agriculture, Ecosystems and Environment, 2014, 192, 144-151.                                       | 5.3  | 58        |
| 13 | Identifying key ecosystem service providing areas to inform national-scale conservation planning.<br>Environmental Research Letters, 2021, 16, 014038.                                                    | 5.2  | 55        |
| 14 | The effects of urban greenspace characteristics and socio-demographics vary among cultural ecosystem services. Urban Forestry and Urban Greening, 2020, 49, 126641.                                       | 5.3  | 48        |
| 15 | Variability in ecosystem service measurement: a pollination service case study. Frontiers in Ecology and the Environment, 2013, 11, 414-422.                                                              | 4.0  | 41        |
| 16 | Plant interactions are unimportant in a subarctic–alpine plant community. Ecology, 2009, 90,<br>2360-2367.                                                                                                | 3.2  | 37        |
| 17 | Bright spots in agricultural landscapes: Identifying areas exceeding expectations for multifunctionality and biodiversity. Journal of Applied Ecology, 2018, 55, 2731-2743.                               | 4.0  | 35        |
| 18 | The Montérégie Connection: linking landscapes, biodiversity, and ecosystem services to improve decision making. Ecology and Society, 2015, 20, .                                                          | 2.3  | 34        |

MATTHEW G E MITCHELL

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping. Science of the Total Environment, 2018, 622-623, 57-70.           | 8.0 | 32        |
| 20 | Using high-resolution LiDAR data to quantify the three-dimensional structure of vegetation in urban green space. Urban Ecosystems, 2016, 19, 1749-1765.                                                   | 2.4 | 29        |
| 21 | The Scale-Dependent Role of Biological Traits in Landscape Ecology: A Review. Current Landscape<br>Ecology Reports, 2018, 3, 12-22.                                                                       | 2.2 | 24        |
| 22 | Landscape structure influences urban vegetation vertical structure. Journal of Applied Ecology, 2016, 53, 1477-1488.                                                                                      | 4.0 | 19        |
| 23 | Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous<br>Landscapes. Agriculture (Switzerland), 2019, 9, 6.                                                        | 3.1 | 18        |
| 24 | Woody perennial polycultures in the U.S. Midwest enhance biodiversity and ecosystem functions.<br>Ecosphere, 2022, 13, e03890.                                                                            | 2.2 | 10        |
| 25 | Modules of reproduction in females of the dioecious shrub Oemleria cerasiformis. Canadian Journal of Botany, 2004, 82, 393-400.                                                                           | 1.1 | 9         |
| 26 | Correlations and variance among species traits explain contrasting impacts of fragmentation and habitat loss on functional diversity. Landscape Ecology, 2020, 35, 2239-2253.                             | 4.2 | 9         |
| 27 | Ecosystem service coproduction across the zones of biosphere reserves in Europe. Ecosystems and People, 2021, 17, 491-506.                                                                                | 3.2 | 8         |
| 28 | A user-inspired framework and tool for restoring multifunctional landscapes: putting into practice<br>stakeholder and scientific knowledge of landscape services. Landscape Ecology, 2020, 35, 2535-2548. | 4.2 | 7         |
| 29 | Landscape Fragmentation and Ecosystem Services: A Reply to Andrieu et al Trends in Ecology and Evolution, 2015, 30, 634-635.                                                                              | 8.7 | 6         |
| 30 | Spatial Correlations Don't Predict Changes in Agricultural Ecosystem Services: A Canada-Wide Case<br>Study. Frontiers in Sustainable Food Systems, 2020, 4, .                                             | 3.9 | 6         |
| 31 | Contrasting responses of soybean aphids, primary parasitoids, and hyperparasitoids to forest fragments and agricultural landscape structure. Agriculture, Ecosystems and Environment, 2022, 326, 107752.  | 5.3 | 5         |
| 32 | The Montérégie Connection: Understanding How Ecosystems Can Provide Resilience to the Risk of Ecosystem Service Change. , 2019, , 291-300.                                                                |     | 0         |