Vicente Mariscal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066673/publications.pdf

Version: 2024-02-01

41 papers

1,536 citations

346980 22 h-index 355658 38 g-index

44 all docs

44 docs citations

times ranked

44

1098 citing authors

#	Article	IF	CITATIONS
1	Genetic and lipidomic analyses suggest that Nostoc punctiforme, a plant-symbiotic cyanobacterium, does not produce sphingolipids. Access Microbiology, 2022, 4, 000306.	0.2	2
2	Quantitative Proteomics at Early Stages of the Symbiotic Interaction Between <i>Oryza sativa</i> and <i>Nostoc punctiforme</i> Reveals Novel Proteins Involved in the Symbiotic Crosstalk. Plant and Cell Physiology, 2022, 63, 1433-1445.	1.5	6
3	Impaired cell-cell communication in the multicellular cyanobacterium Anabaena affects carbon uptake, photosynthesis, and the cell wall. IScience, 2021, 24, 101977.	1.9	9
4	Sustaining Rice Production through Biofertilization with N2-Fixing Cyanobacteria. Applied Sciences (Switzerland), 2021, 11, 4628.	1.3	10
5	Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve Response of Eight Crops to Soil Salinization and Climate Change Conditions. Agronomy, 2021, 11, 1609.	1.3	27
6	Cytochrome cM Is Probably a Membrane Protein Similar to the C Subunit of the Bacterial Nitric Oxide Reductase. Applied Sciences (Switzerland), 2021, 11, 9396.	1.3	1
7	Endophytic Colonization of Rice (<i>Oryza sativa</i> L.) by the Symbiotic Strain <i>Nostoc punctiforme</i> PCC 73102. Molecular Plant-Microbe Interactions, 2020, 33, 1040-1045.	1.4	21
8	Cytochrome c6 is the main respiratory and photosynthetic soluble electron donor in heterocysts of the cyanobacterium Anabaena sp. PCC 7120. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 60-68.	0.5	14
9	Mechanisms for Protein Redistribution in Thylakoids of Anabaena During Cell Differentiation. Plant and Cell Physiology, 2018, 59, 1860-1873.	1.5	6
10	Specific mutations in the permease domain of septal protein SepJ differentially affect functions related to multicellularity in the filamentous cyanobacterium Anabaena. Microbial Cell, 2018, 5, 555-565.	1.4	5
11	Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2017, 199, .	1.0	25
12	Septal protein SepJ from the heterocystâ€forming cyanobacterium <i>Anabaena</i> forms multimers and interacts with peptidoglycan. FEBS Open Bio, 2017, 7, 1515-1526.	1.0	11
13	Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120. Frontiers in Cellular and Infection Microbiology, 2017, 7, 386.	1.8	35
14	NRT2.4 and NRT2.5 Are Two Half-Size Transporters from the Chlamydomonas NRT2 Family. Agronomy, 2016, 6, 20.	1.3	7
15	Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in <i>Anabaena</i> . Molecular Microbiology, 2016, 101, 968-981.	1.2	27
16	A dual system formed by the ARC and NR molybdoenzymes mediates nitriteâ€dependent NO production in <i>Chlamydomonas</i> . Plant, Cell and Environment, 2016, 39, 2097-2107.	2.8	130
17	Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. Life, 2015, 5, 1282-1300.	1.1	20
18	Intercellular transfer along the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrospermopsis raciborskii CS-505. FEMS Microbiology Letters, 2015, 362, .	0.7	16

#	Article	IF	Citations
19	Functional Dependence between Septal Protein SepJ from Anabaena sp. Strain PCC 7120 and an Amino Acid ABC-Type Uptake Transporter. Journal of Bacteriology, 2015, 197, 2721-2730.	1.0	10
20	Divisomeâ€dependent subcellular localization of cell–cell joining protein <scp>S</scp> ep <scp>J</scp> in the filamentous cyanobacterium <scp><i>Anabaena</i></scp> . Molecular Microbiology, 2015, 96, 566-580.	1.2	43
21	Spatial Fluctuations in Expression of the Heterocyst Differentiation Regulatory Gene hetR in Anabaena Filaments. PLoS Genetics, 2015, 11, e1005031.	1.5	27
22	Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium <i>Anabaena</i> sp. PCC 7120. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4458-64.	3.3	24
23	Intercellular Diffusion of a Fluorescent Sucrose Analog via the Septal Junctions in a Filamentous Cyanobacterium. MBio, 2015, 6, e02109.	1.8	90
24	Branching and intercellular communication in the $<$ scp $>$ S $<$ /scp $>$ ection $<$ scp $>$ V $<$ /scp $>$ cyanobacterium $<$ scp $>$ Ci $>$ Molecular Microbiology, 2014, 91, 935-949.	1.2	42
25	Subcellular Localization and Clues for the Function of the HetN Factor Influencing Heterocyst Distribution in Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2014, 196, 3452-3460.	1.0	33
26	Functional dissection and evidence for intercellular transfer of the heterocystâ€differentiation <scp>PatS</scp> morphogen. Molecular Microbiology, 2013, 88, 1093-1105.	1.2	56
27	Functional dissection of the threeâ€domain SepJ protein joining the cells in cyanobacterial trichomes. Molecular Microbiology, 2011, 79, 1077-1088.	1.2	46
28	FraC/FraDâ€dependent intercellular molecular exchange in the filaments of a heterocystâ€forming cyanobacterium, <i>Anabaena</i> sp Molecular Microbiology, 2011, 82, 87-98.	1.2	68
29	FraH Is Required for Reorganization of Intracellular Membranes during Heterocyst Differentiation in Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2011, 193, 6815-6823.	1.0	11
30	Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocystâ€forming cyanobacterium <i>Anabaena</i> sp Molecular Microbiology, 2010, 75, 1159-1170.	1.2	87
31	Multicellularity in a Heterocyst-Forming Cyanobacterium: Pathways for Intercellular Communication. Advances in Experimental Medicine and Biology, 2010, 675, 123-135.	0.8	18
32	The outer membrane of a heterocystâ€forming cyanobacterium is a permeability barrier for uptake of metabolites that are exchanged between cells. Molecular Microbiology, 2009, 74, 58-70.	1.2	51
33	Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO Journal, 2008, 27, 1299-1308.	3.5	145
34	ABCâ€type amino acid uptake transporters Bgt and Nâ€l of ⟨i>Anabaena⟨li> sp. strain PCC 7120 share an ATPase subunit and are expressed in vegetative cells and heterocysts. Molecular Microbiology, 2008, 67, 1067-1080.	1.2	58
35	Septum-Localized Protein Required for Filament Integrity and Diazotrophy in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2007, 189, 3884-3890.	1.0	96
36	Continuous periplasm in a filamentous, heterocystâ€forming cyanobacterium. Molecular Microbiology, 2007, 65, 1139-1145.	1.2	90

3

#	Article	IF	CITATION
37	Differential Regulation of the Chlamydomonas Nar1 Gene Family by Carbon and Nitrogen. Protist, 2006, 157, 421-433.	0.6	99
38	The Green Alga Chlamydomonas as a Tool to Study the Nitrate Assimilation Pathway in Plants. , 2006, , 125-158.		0
39	Chlamydomonas reinhardtii strains expressing nitrate reductase under control of the cabll-1 promoter: isolation of chlorate resistant mutants and identification of new loci for nitrate assimilation. Photosynthesis Research, 2005, 83, 151-161.	1.6	12
40	The plastidic nitrite transporter NAR1;1 improves nitrate use efficiency for growth in Chlamydomonas. Plant, Cell and Environment, 2004, 27, 1321-1328.	2.8	17
41	Nitrite transport to the chloroplast in Chlamydomonas reinhardtii: molecular evidence for a regulated process. Journal of Experimental Botany, 2002, 53, 845-853.	2.4	40