
Catherine L R Merry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exciting New Developments and Emerging Themes in Glycosaminoglycan Research. Journal of Histochemistry and Cytochemistry, 2021, 69, 9-11.	1.3	2
2	<scp>3D</scp> hydrogels reveal medulloblastoma subgroup differences and identify extracellular matrix subtypes that predict patient outcome. Journal of Pathology, 2021, 253, 326-338.	2.1	6
3	High sensitivity analysis of nanogram quantities of glycosaminoglycans using ToF-SIMS. Communications Chemistry, 2021, 4, .	2.0	13
4	Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor. International Journal of Molecular Sciences, 2021, 22, 6988.	1.8	4
5	Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma. Nature Communications, 2021, 12, 6130.	5.8	14
6	Bi-allelic Pathogenic Variants in HS2ST1 Cause a Syndrome Characterized by Developmental Delay and Corpus Callosum, Skeletal, and Renal Abnormalities. American Journal of Human Genetics, 2020, 107, 1044-1061.	2.6	11
7	MBRS-43. MODELLING MEDULLOBLASTOMA INVASION AND CHEMORESISTANCE IN A 3D HYALURONAN HYDROGEL SYSTEM. Neuro-Oncology, 2018, 20, i137-i137.	0.6	0
8	Growth Differentiation Factor 5-Mediated Enhancement of Chondrocyte Phenotype Is Inhibited by Heparin: Implications for the Use of Heparin in the Clinic and in Tissue Engineering Applications. Tissue Engineering - Part A, 2017, 23, 275-292.	1.6	25
9	Regulation of vascular smooth muscle cell calcification by syndecan-4/FGF-2/PKCα signalling and cross-talk with TGFβ. Cardiovascular Research, 2017, 113, 1639-1652.	1.8	31
10	The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals, 2017, 10, 54.	1.7	30
11	NDST2 (N-Deacetylase/N-Sulfotransferase-2) Enzyme Regulates Heparan Sulfate Chain Length. Journal of Biological Chemistry, 2016, 291, 18600-18607.	1.6	28
12	Self-assembling peptide hydrogel for intervertebral disc tissue engineering. Acta Biomaterialia, 2016, 46, 29-40.	4.1	98
13	Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nature Communications, 2016, 7, 12170.	5.8	17
14	Leri's pleonosteosis, a congenital rheumatic disease, results from microduplication at 8q22.1 encompassing <i>GDF6</i> and <i>SDC2</i> and provides insight into systemic sclerosis pathogenesis. Annals of the Rheumatic Diseases, 2015, 74, 1249-1256.	0.5	22
15	Comparative Quantification of the Surfaceome of Human Multipotent Mesenchymal Progenitor Cells. Stem Cell Reports, 2015, 4, 473-488.	2.3	40
16	Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils. Journal of Cell Science, 2014, 127, 158-71.	1.2	31
17	Heparan Sulfate Inhibits Hematopoietic Stem and Progenitor Cell Migration and Engraftment in Mucopolysaccharidosis I. Journal of Biological Chemistry, 2014, 289, 36194-36203.	1.6	34
18	Novel Cell Lines Isolated From Mouse Embryonic Stem Cells Exhibiting De Novo Methylation of the F-Cadherin Promoter, Stem Cells, 2014, 32, 2869-2879.	1.4	5

CATHERINE L R MERRY

#	Article	IF	CITATIONS
19	Age-Dependent Changes in Heparan Sulfate in Human Bruch's Membrane: Implications for Age-Related Macular Degeneration. , 2014, 55, 5370.		60
20	Using embryonic stem cells to understand how glycosaminoglycans regulate differentiation. Biochemical Society Transactions, 2014, 42, 689-695.	1.6	16
21	New strategies for cartilage regeneration exploiting selected glycosaminoglycans to enhance cell fate determination. Biochemical Society Transactions, 2014, 42, 703-709.	1.6	17
22	The biochemical determinants of tissue regeneration. Biochemical Society Transactions, 2014, 42, 607-608.	1.6	1
23	Myeloid/Microglial Driven Autologous Hematopoietic Stem Cell Gene Therapy Corrects a Neuronopathic Lysosomal Disease. Molecular Therapy, 2013, 21, 1938-1949.	3.7	96
24	Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation *. Journal of Biological Chemistry, 2013, 288, 5530-5538.	1.6	41
25	Hematopoietic Stem Cell and Gene Therapy Corrects Primary Neuropathology and Behavior in Mucopolysaccharidosis IIIA Mice. Molecular Therapy, 2012, 20, 1610-1621.	3.7	94
26	E-cadherin and, in Its Absence, N-cadherin Promotes Nanog Expression in Mouse Embryonic Stem Cells via STAT3 Phosphorylation. Stem Cells, 2012, 30, 1842-1851.	1.4	66
27	Neuropathology in Mouse Models of Mucopolysaccharidosis Type I, IIIA and IIIB. PLoS ONE, 2012, 7, e35787.	1.1	148
28	Sugar functionalised PEGA surfaces support metabolically active hepatocytes. Journal of Materials Chemistry, 2011, 21, 2901.	6.7	11
29	Mucopolysaccharidosis Type I, Unique Structure of Accumulated Heparan Sulfate and Increased N-Sulfotransferase Activity in Mice Lacking α-l-iduronidase. Journal of Biological Chemistry, 2011, 286, 37515-37524.	1.6	58
30	Mapping the Differential Distribution of Glycosaminoglycans in the Adult Human Retina, Choroid, and Sclera. , 2011, 52, 6511.		103
31	Glycosaminoglycans as regulators of stem cell differentiation. Biochemical Society Transactions, 2011, 39, 383-387.	1.6	59
32	Specific Glycosaminoglycans Modulate Neural Specification of Mouse Embryonic Stem Cells. Stem Cells, Stem Cells, 2011, 29, 629-640.	1.4	68
33	Influencing Hematopoietic Differentiation of Mouse Embryonic Stem Cells using Soluble Heparin and Heparan Sulfate Saccharides. Journal of Biological Chemistry, 2011, 286, 6241-6252.	1.6	44
34	E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells. PLoS ONE, 2011, 6, e21463.	1.1	26
35	Abrogation of E-Cadherin-Mediated Cell–Cell Contact in Mouse Embryonic Stem Cells Results in Reversible LIF-Independent Self-Renewal. Stem Cells, 2009, 27, 2069-2080.	1.4	110
36	Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochemical Society Transactions, 2009, 37, 660-664.	1.6	57

CATHERINE L R MERRY

#	Article	IF	CITATIONS
37	A Developmentally Regulated Heparan Sulfate Epitope Defines a Subpopulation with Increased Blood Potential During Mesodermal Differentiation. Stem Cells, 2008, 26, 3108-3118.	1.4	43
38	Controlling cell morphology on amino acid-modified cellulose. Soft Matter, 2008, 4, 1059.	1.2	31
39	E-Cadherin Inhibits Cell Surface Localization of the Pro-Migratory 5T4 Oncofetal Antigen in Mouse Embryonic Stem Cells. Molecular Biology of the Cell, 2007, 18, 2838-2851.	0.9	101
40	Epithelial-Mesenchymal Transition Events during Human Embryonic Stem Cell Differentiation. Cancer Research, 2007, 67, 11254-11262.	0.4	251
41	The heparanome—The enigma of encoding and decoding heparan sulfate sulfation. Journal of Biotechnology, 2007, 129, 290-307.	1.9	165
42	Essential Alterations of Heparan Sulfate During the Differentiation of Embryonic Stem Cells to Sox1-Enhanced Green Fluorescent Protein-Expressing Neural Progenitor Cells. Stem Cells, 2007, 25, 1913-1923.	1.4	126
43	Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass® composite foam scaffolds: Assessment of cell attachment, proliferation and extracellular matrix production. Biomaterials, 2007, 28, 2010-2020.	5.7	72
44	Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochemical Journal, 2006, 400, 63-73.	1.7	117
45	The Morphogenic Properties of Oligomeric Endostatin Are Dependent on Cell Surface Heparan Sulfate. Journal of Biological Chemistry, 2006, 281, 14813-14822.	1.6	7
46	Glycoscience finally comes of age. EMBO Reports, 2005, 6, 900-903.	2.0	8
47	A New Model for the Domain Structure of Heparan Sulfate Based on the Novel Specificity of K5 Lyase. Journal of Biological Chemistry, 2004, 279, 27239-27245.	1.6	117
48	Detection of 2-O-Sulfated Iduronate and N-Acetylglucosamine Units in Heparan Sulfate by an Antibody Selected against Acharan Sulfate (IdoA2S-GlcNAc). Journal of Biological Chemistry, 2004, 279, 38346-38352.	1.6	21
49	The differentiation of ES cells into neuroectodermal precursors is associated with an increase in the levels and sulfation of heparan sulfate proteoglycans. International Journal of Experimental Pathology, 2004, 85, A65-A66.	0.6	Ο
50	New insights into the alternating sequences of heparan sulfate. International Journal of Experimental Pathology, 2004, 85, A71-A71.	0.6	0
51	Binding of endostatin to endothelial heparan sulphate shows a differential requirement for specific sulphates. Biochemical Journal, 2003, 375, 131-139.	1.7	39
52	Not All Perlecans Are Created Equal. Journal of Biological Chemistry, 2002, 277, 14657-14665.	1.6	139
53	Role of heparan sulfate-2-O-sulfotransferase in the mouse. Biochimica Et Biophysica Acta - General Subjects, 2002, 1573, 319-327.	1.1	37
54	Heparan sulfate 2-O-sulfotransferase (Hs2st) and mouse development. Glycoconjugate Journal, 2002, 19, 347-354.	1.4	28

#	Article	IF	CITATIONS
55	The Molecular Phenotype of Heparan Sulfate in theHs2stâ^'/â^' Mutant Mouse. Journal of Biological Chemistry, 2001, 276, 35429-35434.	1.6	155
56	Highly Sensitive Sequencing of the Sulfated Domains of Heparan Sulfate. Journal of Biological Chemistry, 1999, 274, 18455-18462.	1.6	116
57	Microheterogeneity of Erythropoietin Carbohydrate Structure. Analytical Chemistry, 1995, 67, 1442-1452.	3.2	153