Stuart A Lipton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer's Disease, Parkinson's Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants, 2022, 11, 124.	2.2	57
2	S-Nitrosylation of p62 Inhibits Autophagic Flux to Promote α-Synuclein Secretion and Spread in Parkinson's Disease and Lewy Body Dementia. Journal of Neuroscience, 2022, 42, 3011-3024.	1.7	22
3	S-Nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders. Cell Death and Differentiation, 2022, 29, 2137-2150.	5.0	12
4	Inhibition of autophagic flux by S-nitrosylation of SQSTM1/p62 promotes neuronal secretion and cell-to-cell transmission of SNCA/α-synuclein in Parkinson disease and Lewy body dementia. , 2022, 1, 223-225.		2
5	NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Molecular Psychiatry, 2021, 26, 5751-5765.	4.1	43
6	Novel Therapeutic Approach for Excitatory/Inhibitory Imbalance in Neurodevelopmental and Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2021, 61, 701-721.	4.2	24
7	Noncanonical transnitrosylation network contributes to synapse loss in Alzheimer's disease. Science, 2021, 371, .	6.0	47
8	α-Synuclein Oligomers Induce Glutamate Release from Astrocytes and Excessive Extrasynaptic NMDAR Activity in Neurons, Thus Contributing to Synapse Loss. Journal of Neuroscience, 2021, 41, 2264-2273.	1.7	66
9	S-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
10	TCA cycle metabolic compromise due to an aberrant S-nitrosoproteome in HIV-associated neurocognitive disorder with methamphetamine use. Journal of NeuroVirology, 2021, 27, 367-378.	1.0	6
11	Soluble α-synuclein–antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	69
12	Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 8196.	1.8	9
13	Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity, 2021, 54, 1463-1477.e11.	6.6	179
14	Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radical Biology and Medicine, 2021, 172, 562-577.	1.3	44
15	Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxidants and Redox Signaling, 2021, 35, 531-550.	2.5	19
16	Nitric Oxide-Dependent Protein Post-Translational Modifications Impair Mitochondrial Function and Metabolism to Contribute to Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2020, 32, 817-833.	2.5	36
17	NitroSynapsin for the treatment of neurological manifestations of tuberous sclerosis complex in a rodent model. Neurobiology of Disease, 2019, 127, 390-397.	2.1	8
18	Novel Direct Conversion of Microglia to Neurons. Trends in Molecular Medicine, 2019, 25, 72-74.	3.5	7

#	Article	IF	CITATIONS
19	Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. ELife, 2019, 8, .	2.8	143
20	Cardiolipin exposure onÂthe outer mitochondrial membrane modulates α-synuclein. Nature Communications, 2018, 9, 817.	5.8	136
21	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
22	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	5.0	120
23	The mouse as a model for neuropsychiatric drug development. Current Biology, 2018, 28, R909-R914.	1.8	26
24	Gelatinase activity imaged by activatable cell-penetrating peptides in cell-based and <i>inÂvivo</i> models of stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 188-200.	2.4	34
25	MEF2D haploinsufficiency downregulates the NRF2 pathway and renders photoreceptors susceptible to light-induced oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4048-E4056.	3.3	27
26	â€~SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders. Trends in Endocrinology and Metabolism, 2017, 28, 879-892.	3.1	49
27	S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson's Disease Models. Cell Reports, 2017, 21, 2171-2182.	2.9	103
28	Molecular Pathway to Protection From Age-Dependent Photoreceptor Degeneration in Mef2 Deficiency. , 2017, 58, 3741.		6
29	Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate. F1000Research, 2017, 6, 2138.	0.8	74
30	Therapeutic advantage of pro-electrophilic drugs to activate the Nrf2/ARE pathway in Alzheimer's disease models. Cell Death and Disease, 2016, 7, e2499-e2499.	2.7	71
31	Partnering with Big Pharma—What Academics Need to Know. Cell, 2016, 165, 512-515.	13.5	11
32	Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling. Stem Cell Reports, 2016, 7, 527-542.	2.3	31
33	S-Nitrosylation Induces Structural and Dynamical Changes in a Rhodanese Family Protein. Journal of Molecular Biology, 2016, 428, 3737-3751.	2.0	12
34	Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nature Communications, 2016, 7, 10242.	5.8	99
35	Protein S -Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases. Trends in Pharmacological Sciences, 2016, 37, 73-84.	4.0	136
36	Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation. Neurochemical Research, 2016, 41, 510-514.	1.6	14

#	Article	IF	CITATIONS
37	Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Scientific Reports, 2015, 5, 14812.	1.6	66
38	The critical role of membralin in postnatal motor neuron survival and disease. ELife, 2015, 4, .	2.8	9
39	S-Nitrosylation in neurogenesis and neuronal development. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1588-1593.	1.1	44
40	Zonarol, a sesquiterpene from the brown algae Dictyopteris undulata , provides neuroprotection by activating the Nrf2/ARE pathway. Biochemical and Biophysical Research Communications, 2015, 457, 718-722.	1.0	36
41	Protection from cyanideâ€induced brain injury by the Nrf2 transcriptional activator carnosic acid. Journal of Neurochemistry, 2015, 133, 898-908.	2.1	45
42	Granulocyte-colony stimulating factor as a treatment for diabetic neuropathy in rat. Molecular and Cellular Endocrinology, 2015, 414, 64-72.	1.6	10
43	Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiology of Disease, 2015, 84, 99-108.	2.1	133
44	Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules Is Regulated by Electrochemical Oxidation Potential. ASN Neuro, 2015, 7, 175909141559329.	1.5	15
45	Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells. Genomics Data, 2015, 3, 24-27.	1.3	23
46	Transnitrosylation from DJ-1 to PTEN Attenuates Neuronal Cell Death in Parkinson's Disease Models. Journal of Neuroscience, 2014, 34, 15123-15131.	1.7	88
47	Potential Effect of S-Nitrosylated Protein Disulfide Isomerase on Mutant SOD1 Aggregation and Neuronal Cell Death in Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2014, 49, 796-807.	1.9	51
48	Differential Effects of Synaptic and Extrasynaptic NMDA Receptors on AÎ2-Induced Nitric Oxide Production in Cerebrocortical Neurons. Journal of Neuroscience, 2014, 34, 5023-5028.	1.7	51
49	Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Research, 2014, 24, 126-129.	5.7	110
50	Reprint of: Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radical Biology and Medicine, 2014, 66, 45-57.	1.3	60
51	S-Nitrosylation-Mediated Redox Transcriptional Switch Modulates Neurogenesis and Neuronal Cell Death. Cell Reports, 2014, 8, 217-228.	2.9	58
52	Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radical Biology and Medicine, 2013, 65, 645-657.	1.3	222
53	Isogenic Human iPSC Parkinson's Model Shows Nitrosative Stress-Induced Dysfunction in MEF2-PGC1α Transcription. Cell, 2013, 155, 1351-1364.	13.5	380
54	S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson's disease. Molecular Neurodegeneration, 2013, 8, 29.	4.4	68

#	Article	IF	CITATIONS
55	Aberrant Protein S-Nitrosylation in Neurodegenerative Diseases. Neuron, 2013, 78, 596-614.	3.8	304
56	Emerging Role of Protein-Protein Transnitrosylation in Cell Signaling Pathways. Antioxidants and Redox Signaling, 2013, 18, 239-249.	2.5	125
57	Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2518-27.	3.3	495
58	Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases. Journal of Cell Death, 2013, 6, JCD.S10847.	0.8	28
59	Protective Effect of Carnosic Acid, a Pro-Electrophilic Compound, in Models of Oxidative Stress and Light-Induced Retinal Degeneration. , 2012, 53, 7847.		57
60	Dual neuroprotective pathways of a proâ€electrophilic compound via HSFâ€1â€activated heatâ€shock proteins and Nrf2â€activated phase 2 antioxidant response enzymes. Journal of Neurochemistry, 2011, 119, 569-578.	2.1	50
61	Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Molecular Neurodegeneration, 2011, 6, 34.	4.4	134
62	S-Nitrosylation of Critical Protein Thiols Mediates Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2011, 14, 1479-1492.	2.5	83
63	On–off system for PI3-kinase–Akt signaling through <i>S</i> -nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10349-10354.	3.3	150
64	S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by β-amyloid peptide. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14330-14335.	3.3	165
65	Type C botulinum toxin causes degeneration of motoneurons in vivo. NeuroReport, 2010, 21, 14-18.	0.6	14
66	NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Molecular Neurodegeneration, 2010, 5, 49.	4.4	123
67	S-Nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion, 2010, 10, 573-578.	1.6	120
68	Transnitrosylation of XIAP Regulates Caspase-Dependent Neuronal Cell Death. Molecular Cell, 2010, 39, 184-195.	4.5	162
69	S-Nitrosylation of Drp1 Mediates β-Amyloid-Related Mitochondrial Fission and Neuronal Injury. Science, 2009, 324, 102-105.	6.0	957
70	Carnosic acid, a <i>catecholâ€ŧype</i> electrophilic compound, protects neurons both <i>in vitro</i> and <i>in vivo</i> through activation of the Keap1/Nrf2 pathway via <i>Sâ€</i> alkylation of targeted cysteines on Keap1. Journal of Neurochemistry, 2008, 104, 1116-1131.	2.1	339
71	Pathologically-Activated Therapeutics for Neuroprotection: Mechanism of NMDA Receptor Block by Memantine and S-Nitrosylation. Current Drug Targets, 2007, 8, 621-632.	1.0	180
72	Inflammatory Mediators Leading to Protein Misfolding and Uncompetitive/Fast Offâ€Rate Drug Therapy for Neurodegenerative Disorders. International Review of Neurobiology, 2007, 82, 1-27.	0.9	59

#	Article	IF	CITATIONS
73	Redox regulation of neuronal survival mediated by electrophilic compounds. Trends in Neurosciences, 2007, 30, 37-45.	4.2	142
74	Hypoxia Enhances S-Nitrosylation-Mediated NMDA Receptor Inhibition via a Thiol Oxygen Sensor Motif. Neuron, 2007, 53, 53-64.	3.8	99
75	Perspective author's response: Uncompetitive/Fast Off-rate (UFO) mechanism of pathologically-activated neuroprotective drugs. Nature Reviews Neuroscience, 2007, 8, 989-989.	4.9	1
76	Pathologically activated therapeutics for neuroprotection. Nature Reviews Neuroscience, 2007, 8, 803-808.	4.9	239
77	NMDA Receptors, Glial Cells, and Clinical Medicine. Neuron, 2006, 50, 9-11.	3.8	87
78	Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond. Nature Reviews Drug Discovery, 2006, 5, 160-170.	21.5	765
79	S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 2006, 441, 513-517.	13.7	825
80	Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO Journal, 2006, 25, 3900-3911.	3.5	603
81	Experimental and potential future therapeutic approaches for HIV-1 associated dementia targeting receptors for chemokines, glutamate and erythropoietin. Neurotoxicity Research, 2005, 8, 167-186.	1.3	32
82	Response to Comment on "S-Nitrosylation of Parkin Regulates Ubiquitination and Compromises Parkin's Protective Function". Science, 2005, 308, 1870c-1870c.	6.0	20
83	Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10810-10814.	3.3	494
84	Turning down, but not off. Nature, 2004, 428, 473-473.	13.7	62
85	Possible Role for Memantine in Protecting Retinal Ganglion Cells from Glaucomatous Damage. Survey of Ophthalmology, 2003, 48, S38-S46.	1.7	90
86	Dueling Activities of AIF in Cell Death versus Survival. Cell, 2002, 111, 147-150.	13.5	180
87	Cysteine regulation of protein function – as exemplified by NMDA-receptor modulation. Trends in Neurosciences, 2002, 25, 474-480.	4.2	349
88	S-Nitrosylation of Matrix Metalloproteinases: Signaling Pathway to Neuronal Cell Death. Science, 2002, 297, 1186-1190.	6.0	897
89	Clinically tolerated NMDA receptor antagonists and newly cloned NMDA receptor subunits that mimic them. , 2002, , 72-78.		0
90	Potential and Current Use of N-Methyl-D-Aspartate (NMDA) Receptor Antagonists in Diseases of Aging. Drugs and Aging, 2001, 18, 717-724.	1.3	63

#	Article	IF	CITATIONS
91	Involvement of Activated Caspase-3-Like Proteases in N-Methyl-D-Aspartate-Induced Apoptosis in Cerebrocortical Neurons. Journal of Neurochemistry, 2001, 74, 134-142.	2.1	135
92	Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature, 2001, 410, 988-994.	13.7	1,169
93	Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature, 2001, 412, 641-647.	13.7	888
94	Nitric oxide and respiration. Nature, 2001, 413, 119-121.	13.7	36
95	Evidence for coassembly of mutant GABACï with GABAAγ2S, glycine α1 and glycine α2 receptor subunits in vitro. European Journal of Neuroscience, 2000, 12, 3137-3145.	1.2	41
96	Expression of GABACreceptor ।। and ।2 subunits during development of the mouse retina. European Journal of Neuroscience, 2000, 12, 3575-3582.	1.2	30
97	Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nature Neuroscience, 2000, 3, 15-21.	7.1	411
98	Signaling Events in NMDA Receptor-Induced Apoptosis in Cerebrocortical Cultures. Annals of the New York Academy of Sciences, 1999, 893, 261-264.	1.8	16
99	Neuronal protection and destruction by NO. Cell Death and Differentiation, 1999, 6, 943-951.	5.0	207
100	Ratio of S-nitrosohomocyst(e)ine to homocyst(e)ine or other thiols determines neurotoxicity in rat cerebrocortical cultures. Neuroscience Letters, 1999, 265, 103-106.	1.0	33
101	Neuroprotective versus neurodestructive effects of NOâ€related species. BioFactors, 1998, 8, 33-40.	2.6	53
102	Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature, 1998, 393, 377-381.	13.7	542
103	Role of Caspases in <i>N</i> â€Methylâ€ <scp>d</scp> â€Aspartateâ€Induced Apoptosis in Cerebrocortical Neurons. Journal of Neurochemistry, 1998, 71, 946-959.	2.1	155
104	(S)NO Signals: Translocation, Regulation, and a Consensus Motif. Neuron, 1997, 18, 691-696.	3.8	679
105	Suppression of neuronal apoptosis by S-nitrosylation of caspases. Neuroscience Letters, 1997, 236, 139-142.	1.0	155
106	Janus faces of NF-κB: Neurodestruction versus neuroprotection. Nature Medicine, 1997, 3, 20-22.	15.2	159
107	Similarity of Neuronal Cell Injury and Death in AIDS Dementia and Focal Cerebral Ischemia: Potential Treatment with NMDA Openâ€Channel Blockers and Nitric Oxideâ€Related Species. Brain Pathology, 1996, 6, 507-517.	2.1	84
108	Cytoskeletal Breakdown and Apoptosis Elicited by NO Donors in Cerebellar Granule Cells Require NMDA Receptor Activation. Journal of Neurochemistry, 1996, 67, 2484-2493.	2.1	128

#	Article	IF	CITATIONS
109	The Coat Protein gp120 of HIV-1 Inhibits Astrocyte Uptake of Excitatory Amino Acids via Macrophage Arachidonic Acid. European Journal of Neuroscience, 1995, 7, 2502-2507.	1.2	103
110	HIV-related neuronal injury. Molecular Neurobiology, 1994, 8, 181-196.	1.9	98
111	Neuroprotective and Neurodestructive Effects of Nitric Oxide and Redox Congeners. Annals of the New York Academy of Sciences, 1994, 738, 382-387.	1.8	50
112	Delayed administration of memantine preventsN-methyl-D-aspartate receptor-mediated neurotoxicity. Annals of Neurology, 1993, 33, 403-407.	2.8	90
113	A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 1993, 364, 626-632.	13.7	2,443
114	A slowly inactivating K+ current in retinal ganglion cells from postnatal rat. Visual Neuroscience, 1992, 8, 171-176.	0.5	19
115	Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron, 1992, 8, 1087-1099.	3.8	739
116	7-Chlorokynurenate Ameliorates Neuronal Injury Mediated by HIV Envelope Protein gp120 in Rodent Retinal Cultures. European Journal of Neuroscience, 1992, 4, 1411-1415.	1.2	18
117	HIVâ€Related Neurotoxicity. Brain Pathology, 1991, 1, 193-199.	2.1	110
118	Calcium channel antagonists and human immunodeficiency virus coat protein-mediated neuronal injury. Annals of Neurology, 1991, 30, 110-114.	2.8	66
119	GABA-activated single channel currents in outside-out membrane patches from rat retinal ganglion cells. Visual Neuroscience, 1989, 3, 275-279.	0.5	15
120	Prevention of classic migraine headache by digital massage of the superficial temporal arteries during visual aura. Annals of Neurology, 1986, 19, 515-516.	2.8	21
121	Implications of Nitrosative Stress-Induced Protein Misfolding in Neurodegeneration. , 0, , 145-152.		0