
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction and observation of formation of Ca–Mg arsenates in acidic and alkaline fluids: Thermodynamic properties and mineral assemblages at Jáchymov, Czech Republic and Rotgülden, Austria. Chemical Geology, 2021, 559, 119922.	1.4	5
2	Thermodynamics of the double sulfates Na2M2+(SO4)2·nH2O (M = Mg, Mn, Co, Ni, Cu, Zn, n = 2 or 4) of the blödite–kröhnkite family. RSC Advances, 2021, 11, 374-379.	1.7	3
3	Are the thermodynamic properties of natural and synthetic Mg2SiO4-Fe2SiO4 olivines the same?. American Mineralogist, 2021, 106, 317-321.	0.9	2
4	A new activity model for Fe–Mg–Al biotites: II—Applications in the K2O–FeO–MgO–Al2O3–SiO2âŧ (KFMASH) system. Contributions To Mineralogy and Petrology, 2021, 176, 1.	€"H2O 1.2	2
5	A new activity model for Fe–Mg–Al biotites: l—Derivation and calibration of mixing parameters. Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	0
6	Chapmanite [Fe ₂ Sb(Si ₂ O ₅)O ₃ (thermodynamic properties and formation in low-temperature environments. European Journal of Mineralogy, 2021, 33, 357-371.	O <u>H)]</u> : 0.4	3
7	Heat capacity, entropy, configurational entropy, and viscosity of magnesium silicate glasses and liquids. Physics and Chemistry of Minerals, 2021, 48, 1.	0.3	1
8	The assimilation of felsic xenoliths in kimberlites: insights into temperature and volatiles during kimberlite emplacement. Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	3
9	Excess heat capacity and entropy of mixing along the hydroxyapatite-chlorapatite and hydroxyapatite-fluorapatite binaries. Physics and Chemistry of Minerals, 2021, 48, 44.	0.3	2
10	Excess enthalpy of mixing of mineral solid solutions derived from density-functional calculations. Physics and Chemistry of Minerals, 2020, 47, 15.	0.3	3
11	Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4. Journal of Materials Science, 2020, 55, 8477-8490.	1.7	5
12	A new activity model for Mg–Al biotites determined through an integrated approach. Contributions To Mineralogy and Petrology, 2019, 174, 76.	1.2	5
13	Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization?. Polymers, 2019, 11, 1533.	2.0	7
14	An analysis of the magnetic behavior of olivine and garnet substitutional solid solutions. American Mineralogist, 2019, 104, 1246-1255.	0.9	5
15	Thermodynamic behaviour of grossular–andradite, Ca3(AlxFe3+1-x)2Si3O12, garnets: a calorimetric study. European Journal of Mineralogy, 2019, 31, 443-451.	0.4	7
16	P21/c-C2/c phase transition and mixing properties of the (Li,Na)FeGe2O6 solid solution: A calorimetric and thermodynamic study. Journal of Chemical Thermodynamics, 2018, 120, 123-140.	1.0	6
17	Stability and calorimetric studies of silicoâ€ferrites of calcium aluminum and magnesium. Journal of the American Ceramic Society, 2018, 101, 4193-4202.	1.9	1
18	Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O) x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite. European Journal of Mineralogy, 2018, 30, 259-275.	0.4	20

#	Article	IF	CITATIONS
19	Thermodynamics of disordering in Au3Cu. Journal of Alloys and Compounds, 2018, 735, 1344-1349.	2.8	5
20	Recent developments and the future of lowâ€ <i>T</i> calorimetric investigations in the Earth sciences: Consequences for thermodynamic calculations and databases. Journal of Metamorphic Geology, 2018, 36, 283-295.	1.6	12
21	Heat capacity measurements of CaAlSiO4F from 5 to 850 K and its standard entropy. American Mineralogist, 2018, 103, 1165-1168.	0.9	3
22	The accuracy of standard enthalpies and entropies for phases of petrological interest derived from density-functional calculations. Contributions To Mineralogy and Petrology, 2018, 173, 90.	1.2	22
23	Heat capacity and entropy behavior of andradite: a multi-sample and â^'methodological investigation. European Journal of Mineralogy, 2018, 30, 681-694.	0.4	8
24	Thermodynamic properties of mansfieldite (AlAsO ₄ ·2H ₂ O), angelellite (Fe ₄ (AsO ₄) ₂ O ₃) and kamarizaite (Fe ₃ (AsO ₄) ₂ (OH) ₃ ·3H ₂ O). Mineralogical Magazine, 2018, 82, 1333-1354.	0.6	8
25	Thermodynamics and crystal chemistry of rhomboclase, (H ₅ O ₂)Fe(SO ₄) ₂ ·2H ₂ O, and the phase (H ₃ O)Fe(SO ₄) ₂ and implications for acid mine drainage. American Mineralogist, 2017, 102, 643-654.	0.9	5
26	A neutron diffraction study of crystal and low-temperature magnetic structures within the (Na,Li)FeGe2O6 pyroxene-type solid solution series. Physics and Chemistry of Minerals, 2017, 44, 669-684.	0.3	5
27	Thermodynamics, stability, crystal structure, and phase relations among euchroite, Cu2 (AsO4)(OH)·3H2O, and related minerals. European Journal of Mineralogy, 2017, 29, 5-16.	0.4	9
28	Thermodynamic properties of tooeleite, Fe63+(As3+O3)4(SO4)(OH)4·4H2O. Chemie Der Erde, 2016, 76, 419-428.	0.8	14
29	Thermodynamic properties of FeAsO 4 ·0.75H 2 O - a more favorable disposable product of low As solubility. Hydrometallurgy, 2016, 164, 136-140.	1.8	8
30	Crystal chemistry, Mössbauer spectroscopy, and thermodynamic properties of botryogen. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2016, 193, 147-159.	0.1	2
31	Thermodynamic Properties and Phase Equilibria of the Secondary Copper Minerals Libethenite, Olivenite, Pseudomalachite, KrA¶hnkite, Cyanochroite, and Devilline. Canadian Mineralogist, 2015, 53, 937-960.	0.3	23
32	The Structure and Thermochemistry of Three Fe-Mg Chlorites. Clays and Clay Minerals, 2015, 63, 351-367.	0.6	6
33	The vibrational and configurational entropy of disordering in Cu3Au. Journal of Alloys and Compounds, 2015, 632, 585-590.	2.8	25
34	First-principles investigation of the lattice vibrations in the alkali feldspar solid solution. Physics and Chemistry of Minerals, 2015, 42, 243-249.	0.3	9
35	Standard-state thermodynamic properties of annite, KFe3[(OH)2AlSi3O10], based on new calorimetric measurements. European Journal of Mineralogy, 2015, 27, 603-616.	0.4	5
36	Thermochemistry of the alkali feldspars: Calorimetric study of the entropy relations in the low albite-low microcline series. American Mineralogist, 2014, 99, 76-83.	0.9	11

#	Article	IF	CITATIONS
37	Thermodynamic mixing properties and behavior of almandine–spessartine solid solutions. Geochimica Et Cosmochimica Acta, 2014, 125, 210-224.	1.6	10
38	The vibrational and configurational entropy of α-brass. Journal of Chemical Thermodynamics, 2014, 71, 126-132.	1.0	5
39	Thermodynamic mixing properties and behavior of grossular–spessartine, (Ca Mn1â^')3Al2Si3O12, solid solutions. Geochimica Et Cosmochimica Acta, 2014, 141, 294-302.	1.6	7
40	Heat capacity and entropy of rutile and TiO2II: Thermodynamic calculation of rutile–TiO2II transition boundary. Physics of the Earth and Planetary Interiors, 2014, 226, 39-47.	0.7	12
41	Thermodynamic properties of anhydrous and hydrous wadsleyite, βâ^'Mg ₂ SiO ₄ . High Pressure Research, 2013, 33, 584-594.	0.4	9
42	Calorimetric study of the entropy relation in the NaCl–KCl system. Journal of Chemical Thermodynamics, 2013, 62, 231-235.	1.0	7
43	The heat capacity of fayalite at high temperatures. American Mineralogist, 2012, 97, 657-660.	0.9	29
44	Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties. American Mineralogist, 2012, 97, 1771-1782.	0.9	25
45	Experimentally Determined Standard Thermodynamic Properties of Synthetic MgSO ₄ ·4H ₂ O (Starkeyite) and MgSO ₄ ·3H ₂ O: A Revised Internally Consistent Thermodynamic Data Set for Magnesium Sulfate Hydrates. Astrobiology, 2012, 12, 1042-1054.	1.5	21
46	Thermodynamic behavior and properties of katoite (hydrogrossular): A calorimetric study. American Mineralogist, 2012, 97, 1252-1255.	0.9	17
47	Grossular: A crystal-chemical, calorimetric, and thermodynamic study. American Mineralogist, 2012, 97, 1299-1313.	0.9	22
48	A relationship to estimate the excess entropy of mixing: Application in silicate solid solutions and binary alloys. Journal of Alloys and Compounds, 2012, 527, 127-131.	2.8	25
49	Heat capacity, entropy and phase equilibria of stishovite. Physics and Chemistry of Minerals, 2012, 39, 153-162.	0.3	15
50	Heat capacity, entropy, and phase equilibria of dmitryivanovite. Physics and Chemistry of Minerals, 2012, 39, 259-267.	0.3	7
51	On the nature of the excess heat capacity of mixing. Physics and Chemistry of Minerals, 2011, 38, 185-191.	0.3	12
52	A sample-saving method for heat capacity measurements on powders using relaxation calorimetry. Cryogenics, 2011, 51, 460-464.	0.9	57
53	Heat capacity and third-law entropy of kaersutite, pargasite, fluoropargasite, tremolite and fluorotremolite. European Journal of Mineralogy, 2010, 22, 319-331.	0.4	8
54	Excess heat capacity and entropy of mixing in the high-structural state (K,Ca)-feldspar binary. Physics and Chemistry of Minerals, 2010, 37, 209-218.	0.3	13

#	Article	IF	CITATIONS
55	Excess heat capacity and entropy of mixing along the chlorapatite–fluorapatite binary join. Physics and Chemistry of Minerals, 2010, 37, 665-676.	0.3	27
56	A ternary feldspar-mixing model based on calorimetric data: development and application. Contributions To Mineralogy and Petrology, 2010, 160, 327-337.	1.2	126
57	Molecular H2O in armenite, BaCa2Al6Si9O30·2H2O, and epididymite, Na2Be2Si6O15·H2O: Heat capacity, entropy and local-bonding behavior of confined H2O in microporous silicates. Geochimica Et Cosmochimica Acta, 2010, 74, 5202-5215.	1.6	10
58	Excess heat capacity and entropy of mixing in ternary series of high-structural-state feldspars. European Journal of Mineralogy, 2010, 22, 403-410.	0.4	23
59	Heat-capacity behaviour of hemimorphite, Zn4Si2O7(OH)2H2O, and its dehydrated analogue Zn4Si2O7(OH)2: a calorimetric and thermodynamic investigation of their phase transitions. European Journal of Mineralogy, 2009, 21, 971-983.	0.4	11
60	Quasi-ice-like CP behavior of molecular H2O in hemimorphite Zn4Si2O7(OH)2{middle dot}H2O: CP and entropy of confined H2O in microporous silicates. American Mineralogist, 2009, 94, 634-637.	0.9	12
61	Excess heat capacity and entropy of mixing in high structural state plagioclase. American Mineralogist, 2009, 94, 1153-1161.	0.9	28
62	A calorimetric investigation of spessartine: Vibrational and magnetic heat capacity. Geochimica Et Cosmochimica Acta, 2009, 73, 3393-3409.	1.6	22
63	The uncertainty in determining the third law entropy by the heat-pulse calorimetric technique. Cryogenics, 2008, 48, 527-529.	0.9	25
64	Low-temperature calorimetric and magnetic data for natural end-members of the axinite group. American Mineralogist, 2008, 93, 548-557.	0.9	6
65	Low-temperature heat capacity of synthetic Fe- and Mg-cordierite: thermodynamic properties and phase relations in the system FeO-Al2O3-SiO2-(H2O). European Journal of Mineralogy, 2008, 20, 47-62.	0.4	10
66	Heat capacity and entropy of melanophlogite: Molecule-containing porosils in nature. American Mineralogist, 2008, 93, 1179-1182.	0.9	13
67	Polymorphism and thermochemistry of MgAlPO4O, a product of lazulite breakdown at high temperature. European Journal of Mineralogy, 2007, 19, 159-172.	0.4	3
68	Entropies of mixing and subsolidus phase relations of forsterite-fayalite (Mg2SiO4-Fe2SiO4) solid solution. American Mineralogist, 2007, 92, 699-702.	0.9	8
69	Thermodynamic mixing behavior of synthetic Ca-Tschermak–diopside pyroxene solid solutions: I. Volume and heat capacity of mixing. Physics and Chemistry of Minerals, 2007, 34, 733-746.	0.3	28
70	A low-temperature calorimetric study of synthetic (forsterite+fayalite) {(Mg2SiO4+Fe2SiO4)} solid solutions: An analysis of vibrational, magnetic, and electronic contributions to the molar heat capacity and entropy of mixing. Journal of Chemical Thermodynamics, 2007, 39, 906-933.	1.0	57
71	Heat capacities and entropies of mixing of pyrope-grossular (Mg3Al2Si3O12-Ca3Al2Si3O12) garnet solid solutions: A low-temperature calorimetric and a thermodynamic investigation. American Mineralogist, 2006, 91, 894-906.	0.9	77
72	Geochemistry of metabasites in the north of the Shahrekord, Sanandaj-Sirjan Zone, Iran. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2006, 182, 291-298.	0.1	11

#	Article	IF	CITATIONS
73	Calorimetric data for naturally occurring magnesiocarpholite and ferrocarpholite. American Mineralogist, 2006, 91, 441-445.	0.9	8
74	Precision and accuracy of the heat-pulse calorimetric technique: lowtemperature heat capacities of milligram-sized synthetic mineral samples. European Journal of Mineralogy, 2005, 17, 251-259.	0.4	107
75	The heat capacity of the serpentine subgroup mineral berthierine (Fe _{2.5} Al _{0.5})[Si _{1.5} Al _{0.5} 5](OH) _{4 Clays and Clay Minerals, 2005, 53, 380-388.}	<b StdB>.	12
76	Comprehensive chemical analyses of natural cordierites: implications for exchange mechanisms. Lithos, 2004, 78, 389-409.	0.6	52
77	PET: Petrological Elementary Tools for Mathematica®: an update. Computers and Geosciences, 2004, 30, 173-182.	2.0	37
78	Pitfalls in geothermobarometry of eclogites: Fe 3+ and changes in the mineral chemistry of omphacite at ultrahigh pressures. Contributions To Mineralogy and Petrology, 2004, 147, 305-318.	1.2	77
79	Constraints on the duration of high-pressure metamorphism in the Tauern Window from diffusion modelling of discontinuous growth zones in eclogite garnet. Journal of Metamorphic Geology, 2002, 20, 769-780.	1.6	49
80	Relics of high-pressure metamorphism from the Grossglockner region, Hohe Tauern, Austria: Paragenetic evolution and PT-paths of retrogressed eclogites. European Journal of Mineralogy, 2001, 13, 67-86.	0.4	35
81	Heat capacities of Tschermak substituted Fe-biotite. Contributions To Mineralogy and Petrology, 1999, 135, 53-61.	1.2	14
82	PET: petrological elementary tools for mathematica. Computers and Geosciences, 1998, 24, 219-235.	2.0	52
83	Eclogite meso- and microfabrics: implications for the burial and exhumation history of eclogites in the Tauern Window (Eastern Alps) from P-T-d paths. Tectonophysics, 1998, 285, 183-209.	0.9	55
84	Annite stability revised: hydrogen-sensor data for the reaction annite = sanidine + magnetite + H 2 : additional results and reply to Chou. Contributions To Mineralogy and Petrology, 1997, 128, 306-311.	1.2	4
85	Uncertainties in the activities of garnets and their propagation into geothermobarometry. European Journal of Mineralogy, 1994, 6, 291-296.	0.4	7
86	The mechanism of the reaction 1 tremolite+3 calcite+2 quartz =5 diopside+3 CO2+1 H2O: results of powder experiments. Contributions To Mineralogy and Petrology, 1988, 100, 542-551.	1.2	26