
David E Potter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4066413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ketamine: repurposing and redefining a multifaceted drug. Drug Discovery Today, 2014, 19, 1848-1854.	3.2	40
2	Non-Analgesic Effects of Opioids: Neuroprotection in the Retina. Current Pharmaceutical Design, 2012, 18, 6101-6108.	0.9	30
3	Opioid Receptor-Activation: Retina Protected from Ischemic Injury. , 2009, 50, 3853.		62
4	The Opioidergic System: Potential Roles and Therapeutic Indications in the Eye. Journal of Ocular Pharmacology and Therapeutics, 2008, 24, 117-140.	0.6	8
5	Bremazocine: A κâ€Opioid Agonist with Potent Analgesic and Other Pharmacologic Properties. CNS Neuroscience & Therapeutics, 2005, 11, 195-212.	4.0	44
6	Bremazocine Increases C-Type Natriuretic Peptide Levels in Aqueous Humor and Enhances Outflow Facility. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 548-553.	1.3	21
7	Delta-opioid agonist-stimulated inositol phosphate formation in isolated, rabbit iris-ciliary bodies: role of Gi/o proteins and Gβγ-subunits. Experimental Eye Research, 2003, 77, 647-652.	1.2	12
8	Changes in muscle proteins and spermidine content in response to unloading and clenbuterol treatment. Canadian Journal of Physiology and Pharmacology, 2003, 81, 28-39.	0.7	7
9	Naphazoline-Induced Neuroendocrine Changes: Increases in ANP and cGMP Levels, but Suppression of NE, ³ H-NE, and cAMP Levels in Rabbit Eyes. Pharmacology, 2002, 65, 155-161.	0.9	11
10	Inhibition of cAMP Accumulation by κ-Receptor Activation in Isolated Iris-Ciliary Bodies: Role of Phosphodiesterase and Protein Kinase C. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 599-604.	1.3	8
11	Ocular Hypotension Induced by Electroacupuncture. Journal of Ocular Pharmacology and Therapeutics, 2002, 18, 293-305.	0.6	30
12	Muscle-Specific Effects of Hindlimb Suspension and Clenbuterol in Mature Male Rats. Cells Tissues Organs, 2002, 171, 188-198.	1.3	31
13	Effect of Hindlimb Suspension and Clenbuterol Treatment on Polyamine Levels in Skeletal Muscle. Pharmacology, 2002, 65, 145-154.	0.9	17
14	Dynorphin Modulates Ocular Hydrodynamics and Releases Atrial Natriuretic Peptide via Activation of κ-Opioid Receptors. Experimental Eye Research, 2002, 75, 259-270.	1.2	16
15	Biodegradable Calcium Phosphate Nanoparticles as a New Vehicle for Delivery of a Potential Ocular Hypotensive Agent. Journal of Ocular Pharmacology and Therapeutics, 2002, 18, 507-514.	0.6	38
16	Pharmacological evidence of a role for prejunctionalimidazoline (I1) receptors in ocular function. Current Eye Research, 2002, 25, 267-270.	0.7	3
17	Distribution and Muscle-Sparing Effects of Clenbuterol in Hindlimb-Suspended Rats. Pharmacology, 2002, 65, 38-48.	0.9	24
18	Effect of Bremazocine, a Kappa-Opioid Receptor Agonist, on Inositol Phosphate Formation in Isolated Iris-Ciliary Bodies. Pharmacology, 2002, 66, 100-106.	0.9	6

#	Article	IF	CITATIONS
19	Naphazoline-induced Suppression of Aqueous Humor Pressure and Flow: Involvement of Central and Peripheral α2/I1Receptors. Experimental Eye Research, 2001, 72, 331-339.	1.2	8
20	Kappa Opioid Agonist-Induced Changes in IOP: Correlation with3H-NE Release and cAMP Accumulation. Experimental Eye Research, 2001, 73, 167-178.	1.2	17
21	Elevation of atrial natriuretic peptide levels in aqueous humor of the rabbit by kappa opioid receptor agonists. Neuropeptides, 2001, 35, 232-237.	0.9	9
22	Central imidazoline (I1) receptors modulate aqueous hydrodynamics. Current Eye Research, 2001, 22, 358-366.	0.7	6
23	Comparative analytical quantitation of clenbuterol in biological matrices using GC-MS and EIA. , 2000, 14, 99-105.		35
24	?-Agonist-induced alterations in organ weights and protein content: Comparison of racemic clenbuterol and its enantiomers. Chirality, 2000, 12, 637-648.	1.3	39
25	Modulation of Ocular Hydrodynamics and Iris Function by Bremazocine, a Kappa Opioid Receptor Agonist. Experimental Eye Research, 2000, 70, 675-682.	1.2	26
26	β-Agonist-induced alterations in organ weights and protein content: Comparison of racemic clenbuterol and its enantiomers. , 2000, 12, 637.		2
27	Intraocular Pressure Lowering by S-allylmercaptocysteine in Rabbits. Journal of Ocular Pharmacology and Therapeutics, 1999, 15, 9-17.	0.6	5
28	Peripheral and Central Effects of Naphazoline on Ocular Hydrodynamics: Involvement of Imidazoline Receptors, ANP, and Gi Proteinsa. Annals of the New York Academy of Sciences, 1999, 881, 388-391.	1.8	4
29	8OH-DPAT-Induced Ocular Hypotension: Sites and Mechanisms of Action. Experimental Eye Research, 1999, 69, 227-238.	1.2	20
30	Potential Sites of Action of TNPA: A Dopamine-2 Receptor Agonist. Experimental Eye Research, 1999, 69, 611-616.	1.2	13
31	Lisuride Acts at Multiple Sites to Induce Ocular Hypotension and Mydriasis. Pharmacology, 1998, 57, 249-260.	0.9	11
32	Potential Mechanisms of Moxonidine-Induced Ocular Hypotension: Role of Norepinephrine. Journal of Ocular Pharmacology and Therapeutics, 1997, 13, 489-496.	0.6	14
33	Elevation of intracellular Ca2+ concentration in rabbit nonpigmented ciliary epithelial cells by allicin. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1996, 115, 89-94.	0.5	2
34	Ocular Action of an Opioid Peptide, DPDPE. Journal of Ocular Pharmacology and Therapeutics, 1996, 12, 131-139.	0.6	11
35	Rilmenidine-induced ocular hypotension: Role of imidazoline1and alpha2receptors. Current Eye Research, 1996, 15, 943-950.	0.7	8
36	Oxymetazoline: Potential Mechanisms of Inhibitory Effects on Aqueous Humor Dynamics. Pharmacology, 1996, 53, 259-270.	0.9	11

#	Article	IF	CITATIONS
37	Do dopamine and dopamine receptors have roles in modulating function in the anterior segment?: The evidence. Progress in Retinal and Eye Research, 1995, 15, 103-111.	7.3	9
38	Centrally Mediated Ocular Hypotension: Potential Role of Imidazoline Receptors. Annals of the New York Academy of Sciences, 1995, 763, 463-485.	1.8	18
39	Potential Role of Imidazoline (I1) Receptors in Modulating Aqueous Humor Dynamics. Journal of Ocular Pharmacology and Therapeutics, 1994, 10, 393-402.	0.6	11
40	The central effects of moxonidine on intraocular pressure and its antagonism by L-659, 066 and L-657, 743 in the rabbit. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1994, 18, 1051-1061.	2.5	6
41	Alpha-2 Adrenoceptor Mediated Changes in Aqueous Dynamics: Effect of Pertussis Toxin. Experimental Eye Research, 1994, 58, 729-736.	1.2	19
42	Ocular actions of an octahydrobenzo[f]quinoline: Ha117. European Journal of Pharmacology, 1993, 236, 61-68.	1.7	6
43	Allicin-Induced Hypotension in Rabbit Eyes. Journal of Ocular Pharmacology and Therapeutics, 1993, 9, 201-209.	0.6	17
44	Comparative Effects of Alpha-2 and DA-2 Agonists on Intraocular Pressure in Pigmented and Nonpigmented Rabbits. Journal of Ocular Pharmacology and Therapeutics, 1993, 9, 187-199.	0.6	8
45	Pharmacological evidence for heterogeneity of ocular \$aL2adrenoceptors. Current Eye Research, 1992, 11, 963-970.	0.7	20
46	Ocular inhibitory effects of the dopamine DA ₂ agonist (Haâ€118) in cats and rabbits. Autonomic and Autacoid Pharmacology, 1990, 10, 153-162.	0.7	4
47	Alpha ₂ and DA ₂ Agonists as Antiglaucoma Agents: Comparative Pharmacology and Clinical Potential. Journal of Ocular Pharmacology and Therapeutics, 1990, 6, 251-257.	0.6	15
48	Effect of the Calcium Antagonist, Nifedipine, on Ischemic Retinal Dysfunction. Journal of Ocular Pharmacology and Therapeutics, 1990, 6, 293-299.	0.6	49
49	Prejunctional adrenoceptor activity of N-0437: a relatively selective DA2 dopamine receptor agonist. European Journal of Pharmacology, 1990, 178, 351-355.	1.7	5
50	Can UK-14, 304-18 lower IOP in rabbits by a peripheral mechanism?. Current Eye Research, 1989, 8, 547-552.	0.7	13
51	LY141865: A Relatively Selective DA2 Agonist with Complex Ocular Activity. Journal of Ocular Pharmacology and Therapeutics, 1988, 4, 19-28.	0.6	5
52	Ocular and cardiac β-antagonism by timolol prodrugs, timolol and levobunolol. Current Eye Research, 1988, 7, 755-759.	0.7	10
53	Cianergoline Lowers Intraocular Pressure in Rabbits and Monkeys and Inhibits Contraction of the Cat Nictitans by Suppressing Sympathetic Neuronal Function. Journal of Ocular Pharmacology and Therapeutics, 1987, 3, 309-321.	0.6	15
54	Ocular Effects of a N,N-Disubstituted 5-OH Aminotetralin (N-0437): Evidence for a Dual Mechanism of Action. Current Eye Research, 1987, 6, 1319-1326.	0.7	11

#	Article	IF	CITATIONS
55	Aporphine derivatives affect ocular function in diverse ways. Current Eye Research, 1987, 6, 1227-1236.	0.7	10
56	Dihydrolevobunolol is a Potent Ocular \hat{l}^2 -adrenoceptor Antagonist. Journal of Ocular Pharmacology and Therapeutics, 1987, 3, 11-15.	0.6	13
57	The Ocular Effects of Xylazine in Rabbits, Cats, and Monkeys. Journal of Ocular Pharmacology and Therapeutics, 1986, 2, 9-21.	0.6	32
58	Effects of Ibuterol, a β-2 Adrenergic Prodrug, on Intraocular Pressure. Journal of Ocular Pharmacology and Therapeutics, 1986, 2, 225-237.	0.6	9
59	Ocular effects of a relatively selective α2 agonist (UK-14, 304-18) in cats, rabbits and monkeys. Current Eye Research, 1986, 5, 665-676.	0.7	89
60	Does B-HT 920 Lower Intraocular Pressure in Cats by Interacting with α2- and/or DA2 Adrenoceptors?. Journal of Ocular Pharmacology and Therapeutics, 1985, 1, 29-45.	0.6	12
61	Forskolin suppresses sympathetic neuron function and causes ocular hypotension. Current Eye Research, 1985, 4, 87-96.	0.7	16
62	EFFECTS OF AMINOTETRALINS ON INTRAOCULAR PRESSURE AND PUPILLARY FUNCTION IN RABBITS. Autonomic and Autacoid Pharmacology, 1984, 4, 185-193.	0.7	12
63	Anin vivomodel for dissociating α2- and DA2-adrenoceptor activity in an ocular adnexa: Utility of the cat nictitating membrane preparation. Current Eye Research, 1984, 3, 1289-1298.	0.7	17
64	Ocular hypotensive action of ergoline derivatives in rabbits: effects of sympathectomy and domperidone pretreatment. Current Eye Research, 1984, 3, 307-314.	0.7	39
65	Alteration in ocular function induced by phenylethylamine analogs of dopamine. Current Eye Research, 1984, 3, 851-859.	0.7	27
66	Effects of ergoline derivatives on intraocular pressure and iris function in rabbits and monkeys. Current Eye Research, 1982, 2, 281-288.	0.7	48
67	Effects of Ethanol, Acetaldehyde and Acetate on Insulin Release from Perifused Pancreatic Islets. Pharmacology, 1982, 24, 314-320.	0.9	6
68	Ocular hypertensive response to \hat{I}^2 -adrenoceptor agonists. Current Eye Research, 1982, 2, 711-719.	0.7	9
69	Steric structure activity relationships of various adrenergic agonists: ocular and systemic effects. Current Eye Research, 1981, 1, 25-35.	0.7	17
70	Adrenergic drugs and intraocular pressure. General Pharmacology, 1981, 12, 1-13.	0.7	21
71	Circadian rhythm in intraocular pressure: A rabbit model. Current Eye Research, 1981, 1, 169-173.	0.7	123
72	Adrenergic Drugs and Intraocular Pressure: the Hypertensive Effect of Epinephrine. Ophthalmic Research, 1980, 12, 221-229.	1.0	24

#	Article	IF	CITATIONS
73	Taurine concentrations in the aqueous humor and plasma of anesthetized rabbits. Experientia, 1980, 36, 980-981.	1.2	2
74	Ethanol-induced changes in plasma glucose, insulin and glucagon in fed and fasted rats. Experientia, 1980, 36, 1003-1004.	1.2	16
75	The effects of topical prazosin on normal and elevated intraocular pressure and blood pressure in rabbits. European Journal of Pharmacology, 1980, 64, 361-363.	1.7	21
76	Adrenergic drugs and intraocular pressure: Suppression of ocular hypertension induced by water loading. Experimental Eye Research, 1980, 30, 93-104.	1.2	32
77	Catecholamine-induced alterations in glucose homeostasis in baboons, dogs, rabbits, and rats: Comparative effects of somatostatin. Metabolism: Clinical and Experimental, 1978, 27, 1441-1444.	1.5	13
78	Adrenergic drugs and intraocular pressure: Effects of selective Î ² -adrenergic agonists. Experimental Eye Research, 1978, 27, 615-625.	1.2	89
79	Role of Glucagon in the Hyperglycemic Response to Catecholamines in Fasted Baboons. Pharmacology, 1978, 17, 221-226.	0.9	2
80	Metabolic responses to isoproterenol and epinephrine in the rabbit. Biochemical Pharmacology, 1977, 26, 1065-1069.	2.0	10
81	EFfects of ethanol and 3-mercaptopicolinic acid on isoproterenol and epinephrine-induced changes in glucose homeostasis in normal and alloxan-diabetic rats. Biochemical Pharmacology, 1977, 26, 2231-2235.	2.0	6
82	Metabolic and cardiovascular effects of carbuterol and metaproterenol. Journal of Allergy and Clinical Immunology, 1977, 60, 174-179.	1.5	6
83	The influence of propranolol on catecholamine-induced changes in carbohydrate metabolism in the rabbit. European Journal of Pharmacology, 1975, 32, 186-194.	1.7	18
84	Rabbit and human insulins: Similar cross-reactivities with antibodies to porcine insulin. Experientia, 1973, 29, 1144-1145.	1.2	4
85	Isoproterenol and Epinephrine-Induced Hyperglycemias in Rabbits: Effects of Alloxan Treatment and Prandial State. Experimental Biology and Medicine, 1972, 139, 1242-1245.	1.1	4