
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/406624/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Targeting UDP-α-d-glucose 6-dehydrogenase alters the CNS tumor immune microenvironment and inhibits glioblastoma growth. Genes and Diseases, 2022, 9, 717-730.                                          | 3.4  | 6         |
| 2  | Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nature Communications, 2022, 13, 1511.                                                                       | 12.8 | 77        |
| 3  | ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma. Neuro-Oncology, 2022, 24, 888-900.                                                                                               | 1.2  | 20        |
| 4  | Highly efficient magnetic labelling allows MRI tracking of the homing of stem cellâ€derived<br>extracellular vesicles following systemic delivery. Journal of Extracellular Vesicles, 2021, 10, e12054. | 12.2 | 43        |
| 5  | Frondoside A Inhibits an MYC-Driven Medulloblastoma Model Derived from Human-Induced<br>Pluripotent Stem Cells. Molecular Cancer Therapeutics, 2021, 20, 1199-1209.                                     | 4.1  | 10        |
| 6  | EGFR Activates a TAZ-Driven Oncogenic Program in Glioblastoma. Cancer Research, 2021, 81, 3580-3592.                                                                                                    | 0.9  | 12        |
| 7  | Monoallelic IDH1 R132H Mutation Mediates Glioma Cell Response to Anticancer Therapies via Induction of Senescence. Molecular Cancer Research, 2021, 19, 1878-1888.                                      | 3.4  | 2         |
| 8  | Mutant IDH1 promotes phagocytic function of microglia/macrophages in gliomas by downregulating ICAM1. Cancer Letters, 2021, 517, 35-45.                                                                 | 7.2  | 15        |
| 9  | Suppressive effects of metformin on colorectal adenoma incidence and malignant progression.<br>Pathology Research and Practice, 2020, 216, 152775.                                                      | 2.3  | 9         |
| 10 | Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nature<br>Communications, 2020, 11, 4591.                                                                                 | 12.8 | 81        |
| 11 | ShRNA-based POLD2 expression knockdown sensitizes glioblastoma to DNA-Damaging therapeutics.<br>Cancer Letters, 2020, 482, 126-135.                                                                     | 7.2  | 9         |
| 12 | Tenascin-C Function in Glioma: Immunomodulation and Beyond. Advances in Experimental Medicine and Biology, 2020, 1272, 149-172.                                                                         | 1.6  | 23        |
| 13 | Neutrophils homing into the retina trigger pathology in early age-related macular degeneration.<br>Communications Biology, 2019, 2, 348.                                                                | 4.4  | 37        |
| 14 | Extracellular Matrix Protein Tenascin C Increases Phagocytosis Mediated by CD47 Loss of Function in<br>Glioblastoma. Cancer Research, 2019, 79, 2697-2708.                                              | 0.9  | 48        |
| 15 | Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Stem Cells<br>Translational Medicine, 2019, 8, 112-123.                                                        | 3.3  | 39        |
| 16 | UDP-α-D-glucose 6-dehydrogenase: a promising target for glioblastoma. Oncotarget, 2019, 10, 1542-1543.                                                                                                  | 1.8  | 5         |
| 17 | Advances in Brain Cancer: Creating Monoallelic Single Point Mutation in IDH1 by Single Base Editing.<br>Journal of Oncology Research and Therapy, 2019, 5, .                                            | 0.0  | 2         |
| 18 | Krüppel-like factor 4 (KLF4) induces mitochondrial fusion and increases spare respiratory capacity of<br>human glioblastoma cells. Journal of Biological Chemistry, 2018, 293, 6544-6555.               | 3.4  | 31        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Targeting UDP-α-d-glucose 6-dehydrogenase inhibits glioblastoma growth and migration. Oncogene, 2018, 37, 2615-2629.                                                                                                       | 5.9  | 37        |
| 20 | ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nature Communications, 2018, 9, 1364.                                                                      | 12.8 | 124       |
| 21 | Global Identification of Small Ubiquitin-related Modifier (SUMO) Substrates Reveals Crosstalk<br>between SUMOylation and Phosphorylation Promotes Cell Migration. Molecular and Cellular<br>Proteomics, 2018, 17, 871-888. | 3.8  | 24        |
| 22 | MeDReaders: a database for transcription factors that bind to methylated DNA. Nucleic Acids Research, 2018, 46, D146-D151.                                                                                                 | 14.5 | 94        |
| 23 | Crizotinib and erlotinib inhibits growth of c-Met+/EGFRvIII+ primary human glioblastoma xenografts.<br>Clinical Neurology and Neurosurgery, 2018, 171, 26-33.                                                              | 1.4  | 24        |
| 24 | Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer, 2018, 18, 1025.                                                                    | 2.6  | 14        |
| 25 | Heterozygous IDH1R132H/WT created by "single base editing―inhibits human astroglial cell growth by<br>downregulating YAP. Oncogene, 2018, 37, 5160-5174.                                                                   | 5.9  | 27        |
| 26 | Analysis of KLF4 regulated genes in cancer cells reveals a role of DNA methylation in promoter-<br>enhancer interactions. Epigenetics, 2018, 13, 751-768.                                                                  | 2.7  | 15        |
| 27 | A Role for βA3/A1-Crystallin in Type 2 EMT of RPE Cells Occurring in Dry Age-Related Macular Degeneration. , 2018, 59, AMD104.                                                                                             |      | 62        |
| 28 | Methylation-mediated miR-155-FAM133A axis contributes to the attenuated invasion and migration of IDH mutant gliomas. Cancer Letters, 2018, 432, 93-102.                                                                   | 7.2  | 26        |
| 29 | Abstract 531: HeterozygousIDH1R132H/WTcreated by "single base editing―inhibits human astroglial cell<br>growth by downregulating YAP. , 2018, , .                                                                          |      | 1         |
| 30 | Kruppel-Like Factor 4 (KLF4) and its Regulation on Mitochondrial Homeostasis. Journal of Stem Cell<br>Research & Therapy, 2018, 08, .                                                                                      | 0.3  | 6         |
| 31 | Methylated cis-regulatory elements mediate KLF4-dependent gene transactivation and cell migration.<br>ELife, 2017, 6, .                                                                                                    | 6.0  | 39        |
| 32 | Single-Cell Co-expression Analysis Reveals Distinct Functional Modules, Co-regulation Mechanisms and Clinical Outcomes. PLoS Computational Biology, 2016, 12, e1004892.                                                    | 3.2  | 36        |
| 33 | Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151.<br>Neoplasia, 2016, 18, 185-198.                                                                                             | 5.3  | 22        |
| 34 | Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems. Translational<br>Oncology, 2016, 9, 124-129.                                                                                                   | 3.7  | 6         |
| 35 | Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro-Oncology, 2016, 18, 507-517.                                                                          | 1.2  | 102       |
| 36 | Multiâ€echo Length and Offset VARied Saturation (MeLOVARS) method for improved CEST imaging.<br>Magnetic Resonance in Medicine, 2015, 73, 488-496.                                                                         | 3.0  | 27        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Lipid metabolism enzyme ACSVL3 supports glioblastoma stem cell maintenance and tumorigenicity. BMC<br>Cancer, 2014, 14, 401.                                                                                    | 2.6 | 41        |
| 38 | Construction of human activityâ€based phosphorylation networks. Molecular Systems Biology, 2013, 9,<br>655.                                                                                                     | 7.2 | 153       |
| 39 | In Vivo c-Met Pathway Inhibition Depletes Human Glioma Xenografts of Tumor-Propagating Stem-Like<br>Cells. Translational Oncology, 2013, 6, 104-IN1.                                                            | 3.7 | 44        |
| 40 | Profiling the Dynamics of a Human Phosphorylome Reveals New Components in HGF/c-Met Signaling.<br>PLoS ONE, 2013, 8, e72671.                                                                                    | 2.5 | 19        |
| 41 | DNA methylation presents distinct binding sites for human transcription factors. ELife, 2013, 2, e00726.                                                                                                        | 6.0 | 292       |
| 42 | Regulation of glioblastoma multiforme stemâ€like cells by inhibitor of <scp>DNA</scp> binding proteins<br>and oligodendroglial lineageâ€associated transcription factors. Cancer Science, 2012, 103, 1028-1037. | 3.9 | 20        |
| 43 | PTEN reconstitution alters glioma responses to c-Met pathway inhibition. Anti-Cancer Drugs, 2011, 22, 905-912.                                                                                                  | 1.4 | 12        |
| 44 | Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene, 2011, 30, 3454-3467.                                                                                       | 5.9 | 174       |
| 45 | Krüppel-Like Family of Transcription Factor 9, a Differentiation-Associated Transcription Factor,<br>Suppresses Notch1 Signaling and Inhibits Glioblastoma-Initiating Stem Cells. Stem Cells, 2011, 29, 20-31.  | 3.2 | 80        |
| 46 | c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9951-9956.    | 7.1 | 232       |
| 47 | Cyr61 Mediates Hepatocyte Growth Factor–Dependent Tumor Cell Growth, Migration, and Akt<br>Activation. Cancer Research, 2010, 70, 2932-2941.                                                                    | 0.9 | 47        |
| 48 | <i>DNER</i> , an Epigenetically Modulated Gene, Regulates Glioblastoma-Derived Neurosphere Cell<br>Differentiation and Tumor Propagation. Stem Cells, 2009, 27, 1473-1486.                                      | 3.2 | 84        |
| 49 | Camptothecin and Fas receptor agonists synergistically induce medulloblastoma cell death:<br>ROS-dependent mechanisms. Anti-Cancer Drugs, 2009, 20, 770-778.                                                    | 1.4 | 19        |
| 50 | Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5. BMC<br>Cancer, 2008, 8, 325.                                                                                           | 2.6 | 7         |
| 51 | Transcription-Dependent Epidermal Growth Factor Receptor Activation by Hepatocyte Growth Factor.<br>Molecular Cancer Research, 2008, 6, 139-150.                                                                | 3.4 | 85        |
| 52 | Ribotoxic Stress Sensitizes Glioblastoma Cells to Death Receptor–Induced Apoptosis: Requirements<br>for c-Jun NH2-Terminal Kinase and Bim. Molecular Cancer Research, 2007, 5, 783-792.                         | 3.4 | 40        |
| 53 | Hepatocyte growth factor increases mitochondrial mass in glioblastoma cells. Biochemical and<br>Biophysical Research Communications, 2006, 345, 1358-1364.                                                      | 2.1 | 6         |
| 54 | Identification of new targets of Drosophila pre-mRNA adenosine deaminase. Physiological Genomics,<br>2005, 20, 195-202.                                                                                         | 2.3 | 23        |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sensitization of Glioma Cells to Fas-Dependent Apoptosis by Chemotherapy-Induced Oxidative Stress.<br>Cancer Research, 2005, 65, 5248-5255.                                        | 0.9 | 52        |
| 56 | Targeting the c-Met Pathway Potentiates Glioblastoma Responses to Î <sup>3</sup> -Radiation. Clinical Cancer Research, 2005, 11, 4479-4486.                                        | 7.0 | 117       |
| 57 | The Estrogen Receptor Is Not Essential for All Estrogen Neuroprotection: New Evidence from a New Analog. Neurobiology of Disease, 2002, 9, 282-293.                                | 4.4 | 44        |
| 58 | Multiple Channel Interactions Explain the Protection of Sympathetic Neurons from Apoptosis Induced by Nerve Growth Factor Deprivation. Journal of Neuroscience, 2002, 22, 114-122. | 3.6 | 28        |
| 59 | Ionic Mechanism of Ouabain-Induced Concurrent Apoptosis and Necrosis in Individual Cultured Cortical Neurons. Journal of Neuroscience, 2002, 22, 1350-1362.                        | 3.6 | 221       |